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Abstract

Immune checkpoint inhibitors have revolutionized cancer therapy, yet

only a small fraction of patients respond to treatment. This thesis

investigates the molecular mechanisms driving immunotherapy re-

sponse focusing on bladder cancer. We generated and analyzed a

new dataset of advanced bladder cancer patients treated with immune

checkpoint inhibitors. This allowed us to validate existing biomarkers

and provided new evidence linking mutation clonality to improved im-

munotherapy response. In continuation, we integrated omics data of

six advanced bladder cancer cohorts to conduct an extensive biomarker

exploration, identifying key factors and novel markers associated with

response. Building on these findings, we developed a robust prediction

model for immunotherapy response, achieving high accuracy and sta-

bility when validated in an independent cohort. Finally, we conducted

an in-depth analysis of stop-loss mutations as one of the novel biomark-

ers discovered in the second part. We constructed a comprehensive

database of stop-loss mutations from thousands of cancer patients to

investigate their function and therapeutic potential. Collectively, this

thesis advances our understanding of tumor-immune interactions and

contributes to biomarker discovery in immunotherapy.
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Resum

Els inhibidors del punt de control immunitari han revolucionat la terà-

pia contra el càncer. Tot i això, només una petita fracció dels pacients

respon al tractament. Aquesta tesi investiga els mecanismes moleculars

que impulsen la resposta a la immunoteràpia, centrant-se en el càncer

de bufeta. Hem generat i analitzat un nou dataset de pacients amb

càncer de bufeta avançat que han estat tractats amb inhibidors del punt

de control immunitari. Això ens ha permès validar els biomarcadors ja

existents i aportar noves evidències que relacionen la clonalitat de les

mutacions amb una millor resposta a la immunoteràpia. A continuació,

hem integrat dades òmiques de sis cohorts avançades de càncer de

bufeta per dur a terme una exploració exhaustiva de biomarcadors,

identificant factors clau i nous marcadors associats amb la resposta al

tractament. A partir d’aquests resultats, hem desenvolupat un model

de predicció per a la resposta d’immunoteràpia, assolint una gran pre-

cisió i estabilitat en validar-lo amb una cohort independent. Finalment,

hem dut a terme una anàlisi en profunditat de les mutacions stop-loss,

un dels nous biomarcadors descoberts a la segona part de l’estudi. Per

això, hem construït una base de dades completa de mutacions stop-

loss de milers de pacients amb càncer, amb l’objectiu d’investigar-ne

la funció i potencial terapèutic. En conjunt, aquesta tesi contribueix

a aprofundir el coneixement de les interaccions entre el tumor i el

sistema immunitari i impulsa el descobriment de nous biomarcadors

en immunoteràpia.
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Zusammenfassung

Immuncheckpoint-Inhibitoren haben die Krebstherapie grundlegend

verändert, jedoch spricht nur ein kleiner Teil der Patienten auf diese

Art der Behandlung an. In der vorliegenden Doktorarbeit untersuchten

wir molekulare Mechanismen, die das Ansprechen auf eine Immun-

therapie beeinflussen, und legten dabei einen besonderen Fokus auf

Blasenkrebs. Im ersten Schritt erstellten und analysierten wir einen

neuen Datensatz von Patienten mit fortgeschrittenem Blasenkrebs, die

mit Immuncheckpoint- Inhibitoren behandelt wurden. Dies ermög-

lichte uns, bereits bestehende Biomarker zu validieren und lieferte

neue Beweise für den Zusammenhang zwischen Mutationsklonalität

und einer verbesserten Antwort auf die Immuntherapie. Anschlie-

ßend integrierten wir Omics-Daten von sechs Blasenkrebskohorten,

um eine umfassende Biomarkeruntersuchung durchzuführen. Dabei

wurdenSchlüsselfaktoren und neue Marker identifiziert, die mit einem

Ansprechen auf die Immuntherapie in Verbindung stehen. Abschlie-

ßend führten wir eine eingehende Analyse von Stop-Loss-Mutationen

mit im zweiten Teil identifizierten Biomarkern durch.. Hierzu erstellten

wir eine umfassende Datenbank mit Stop-Loss-Mutationen von Tausen-

den Krebspatienten, um deren Funktion und therapeutisches Potenzial

zu erforschen. Insgesamt trägt diese Arbeit zu einem verbesserten Ver-

ständnis der Interaktionen zwischen Tumor und Immunsystem sowie

zur Entdeckung von neuen Biomarkern für die Immuntherapie bei.
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Preface

Cancer remains one of the greatest challenges of modern medicine, not

only as a biological puzzle asking to be solved but also as a profound

human struggle. The discovery of immune checkpoint inhibitors has

offered new hope to patients for whom traditional therapies have

failed. Yet, the reality remains that only a fraction of individuals

benefits, leaving the pressing question:

Why do some respond while others do not?

This thesis is driven by the conviction that science must bridge this gap:

transforming uncertainty into understanding and data into actionable

insights. Like many, I have known people diagnosed with cancer, and

these experiences have reinforced my belief that research must serve

the people behind the numbers.

Science, at its core, is an effort to bring light to the unknown. I hope

this work, in its own small way, helps move us closer to a world where

fewer conversations about cancer end in uncertainty.
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1INTRODUCTION

1.1 Cancer genome instability and the
generation of neoantigens

Genome instability and immunity are the underlying drivers of human

cancer (Hanahan and Weinberg, 2011). A healthy body cell accu-

mulates somatic mutations increasing its proliferative capabilities, so

called driver mutations, or passenger mutations that have no direct

effect on tumor expansion. Somatic mutations can have a direct effect

on the translated protein. The majority of non-synonymous mutations

are missense mutations where a single nucleotide variant changes the

encoded amino acid. Similarly, insertions and deletions will affect the

protein sequence and can cause a frameshift. A stop-loss, or nonstop,

mutation alters an initial stop codon to a coding amino acid which

results in the continuation of the translation into the three prime un-

translated region (3’UTR) of the mRNA. Copy number changes are

another source of genetic alteration, where modifications in the DNA

structure lead to the amplification or deletion of genetic sections. In

contrast, synonymous mutations, or silent mutations, will not change

the amino acid sequence.

A subset of somatic mutations is estimated to generate tumor-specific

antigens. These antigens originate from the degradation of mutated

protein sequences into peptides that can be loaded onto human leuko-

cyte antigen (HLA) molecules, also known as major histocompatibility

complex (MHC) in other animals. The MHC-peptide complex is then

presented on the cancer cell surface. These presented neoantigens can

be recognized by a T cell receptor (TCR) and induce T cell activation.
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1.1.1 The hide-and-seek between tumor and immune cells

To avoid being detected and killed by the immune system, tumor cells

upregulate the expression of immune checkpoint proteins on their

surface. Immune checkpoints are an essential control measurement

of the immune system, to prevent an overreaction of immune cells

destroying healthy body cells. A ligand-receptor connection between

a ligand on the body cell and its receptor on the T cell inhibits the

activation of the latter. Tumor cells profit from this mechanism. By

overexpressing the immune checkpoint proteins, they inhibit the T

cell-induced immune response that would usually be triggered by a

TCR recognizing a tumor neoantigen.

Immunotherapy describes treatment forms that enhance the patient’s

immune system to detect and kill cancer cells. The introduction of

immunotherapy over a decade ago reshaped the treatment landscape

drastically, with immune checkpoint inhibitors (ICIs) marking a sig-

nificant breakthrough.1 ICIs physically block the ligand-receptor in-

teraction of immune checkpoints between the cancer and the T cell

(Figure 1). The most prominent targeted immune checkpoints are the

programmed cell death protein (PD-1) and its ligand, programmed cell

death protein-ligand (PD-L1), or the cytotoxic T lymphocyte-associated

antigen 4 (CTLA-4).

Treatment with ICIs leads to remarkable clinical response and long-

term benefits in patients with different cancers, among others

melanoma, urothelial carcinoma, renal cell carcinoma, head and neck

squamous cell cancer, and non-small cell lung cancer (Wojtukiewicz

et al., 2021). However, only a subset of patients show clear treatment

response, and the treatment comes with possible immune-related ad-

verse effects (Andres et al., 2022; Hussain et al., 2023; Sullivan and We-

ber, 2022; Yin et al., 2023), the most common being skin toxicities. The

strong response in a small fraction of patients in combination with the

potential toxicity of the treatment highlights the need for biomarkers
1Not least illustrated by the 2018 Nobel Prize in Medicine for immunologists James

Allison and Tasuku Honjo.
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Immune checkpoint
inhibitors (ICI)

anti-PD-L1/anti-PD-1

Tumor cell

T cell

Tumor cell

T cell

TCR

Neoantigen

HLA

PD-L1

PD-1

IMMUNE
ACTIVATION

IMMUNE
EVASION

UNTREATED IMMUNE CHECKPOINT INHIBITORS

Figure 1: The effect mechanism of Immune checkpoint inhibitors (ICIs). Tumor
cells that overexpress PD-L1 can evade immune surveillance by binding
to the PD-1 receptor on T cells, suppressing their activation and cytotoxic
function (left). ICIs targeting PD-1 or PD-L1 disrupt this interaction, ef-
fectively reactivating T cells (right). HLA Human leukocyte antigen, PD-1
Programmed cell death protein, PD-1L Programmed cell death protein
ligand, TCR T cell receptor.

separating responding patients from non-responders. Since the first

authorizations of the anti-CTLA-4 drug ipilimumab in 2011 and the

anti-PD-1 drug pembrolizumab in 2014 (Figure 2), scientists around

the world sought to identify the variables driving ICI response to better

predict treatment outcomes in the future.
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DRUG COMPANY INHIBITOR

Nivolumab Bristol-Myers Squibb anti-PD-L1

anti-PD-L1Atezolizumab Roche
anti-PD-L1Avelumab Pfizer/Merck Co.

Durvalumab AstraZeneca anti-PD-L1
Pembrolizumab Merck Co. anti-PD-1

Pembrolizumab
2nd line treatment
Melanoma

Seq
2014

Atezolizumab
2nd line treatment
Bladder cancer

May
2015

Pembrolizumab
2nd line treatment
High-TMB cancers

June
2020

Approval PMDA (Japan)

Approval FDA (USA)

Approval EMA (EU)

Nivolumab
1st line treatment
Melanoma
IMvigor210

Jan
2016

Atezolizumab
1st line treatment
Bladder cancer

Nivolumab
2nd line treatment
Bladder cancer

Feb
2017

Durvalumab and
Pembrolizumab
2nd line treatment
Bladder Cancer

May
2017

Nivolumab
2nd line treatment
Bladder cancer

Nivolumab
1st line treatment
Melanoma

Apr
2015

Apr
2017

Nivolumab
1st line treatment
Melanoma

Jul
2014

Nivolumab
1st line, adjuvant
muscle-invasive
Bladder cancer

Apr
2022

Avelumab
1st line treatment
Bladder Cancer
JAVELIN 100 trial

Figure 2: Timeline of approval for PD-L1 PD-1 inhibitors by the EU, USA and
Japan. Showing the first drug approved for first and second line treatment
for all cancer types, bladder cancer, and high-TMB cancer. Adapted from the
Cancer Research Institute, accessed December 17th, 2024 (Administration,
2025). EMA European Medicine Agency, FDA Food and Drug Administra-
tion, PD-1 Programmed cell death protein, PD-1L Programmed cell death
protein ligand, PMDA Pharmaceuticals and Medical Devices Agency.

1.2 Genomic-based biomarkers of
immunotherapy response

The rationale for the success of ICI is the reactivation of the immune

system. T cells recognize neoantigens on the tumor surface. Tumor

cells partially evade such T cell recognition by overexpression of im-

mune checkpoints. In the presence of ICIs, the tumor cell cannot

escape the consecutive immune response through activation of the

immune checkpoint. As neoantigens result from mutations, a tumor

accumulating many somatic mutations is more likely to be recognized

by a T cell as non-self. The most relevant biomarker in the context of

ICI response is, therefore, tumor mutational burden (TMB), defined

as the number of mutations per DNA megabase (Mut/Mb). A high

TMB is related to the generation of neoantigens, increasing the prob-

ability of them being presented by an MHC and being immunogenic.

An association between high TMB and anti-CTLA-4 and later anti-

PD-1/anti-PD-L1 response was first seen in melanoma, non-small-cell

lung cancer, and bladder cancer (Hugo et al., 2016; Rizvi et al., 2015;
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Rosenberg et al., 2016; Snyder et al., 2017; Van Allen et al., 2015).

Samstein et al. showed TMB across different cancer types that a TMB

in the upper quintile (20%) positively relates to overall survival across

different cancer types (Samstein et al., 2019). In June 2020, the FDA

approved 10Mb/Mut as a TMB-high threshold for pembrolizumab,

based on a gene panel (for Drug Evaluation and Research, 2020).

While these cases show that overall patients with a high TMB tend

to respond better, such a TMB threshold does not offer a one-fits-all

solution to predict ICI response (Jung et al., 2023; McGrail et al.,

2021; Usset et al., 2024). In many cases, the sole use of TMB is not

sufficient to explain the response to ICI therapy (Samstein et al., 2019;

Snyder et al., 2017). This was especially found for glioma, breast and

prostate cancer, where neoantigen load does not positively correlate

with CD8 T cell infiltration (McGrail et al., 2021), but also for high

mutational tumors such as bladder cancer, where low TMB can show

unexpected good clinical response while a patient with high TMB

might not respond as expected.

Both selection pressure and genetic drift drive the accumulation of

mutations in cancer. Clonal mutations occur at an early stage of cancer

evolution and are found in essentially all tumor cells. In different

studies, clonal TMB has been shown to add to the separation of ICI

responders from non-responders compared to total TMB (Litchfield

et al., 2021; McGranahan et al., 2016; Miao et al., 2018; Snyder et al.,

2017), while in other cases the effect of total TMB was stronger (Usset

et al., 2024). High tumor heterogeneity is expected to lead to a more

dissimilar neoantigen load. Studies in mice have shown that with

a high number of subclonal mutations, the immune response is less

directed. Even in cases of highly immunogenic peptides, a substantial

proportion of cells need to present them to trigger immune activation

(Gejman et al., 2018; Wolf et al., 2019).

In the same way as TMB, neoantigen load relates to better response to

ICIs (Richman et al., 2019; Shapiro and Bassani-Sternberg, 2023). For

a mutation to evict an immune response, it needs to be processed by

1.2 Genomic-based biomarkers of immunotherapy response 5



the tumor cell, loaded onto an HLA, and recognized by a TCR. Several

algorithms have been developed to predict the binding affinity of a

peptide to a patient’s HLA type (Jurtz et al., 2017; O’Donnell et al.,

2020). The number of these predicted neoantigens however strongly

correlates with TMB and gives few new insights into response predic-

tion (Mariathasan et al., 2018; Rech et al., 2018). In contrast to HLA

binding, TCR recognition is difficult to predict. Instead, researchers try

to predict the potential immunogenicity of a presented peptide. One

hypothesis is that the higher a neoantigen’s dissimilarity is to the host

proteome, the more likely it is to be recognized by the immune system.

This is the case for example when the mutated peptide is likely to be

presented by the HLA, while the non-mutated counterpart is not (Rech

et al., 2018; Richman et al., 2019).

In many cancer types, the majority of non-synonymous mutations are

missense mutations, where mutated and wild-type sequences differ

by a single amino acid. In contrast, insertions and deletions can

shift the open reading frame generating completely new peptides

previously unseen by the immune system. These distinct peptides

are hypothesized to have a high potential for antigen recognition

by the TCR due to the reduced likelihood of evicting self-tolerance

mechanisms (Linnebacher et al., 2001; Turajlic et al., 2017). Indeed,

frameshift neoantigens have been linked to ICI response in melanoma,

lung, renal, and unstable colorectal cancer (Lindeboom et al., 2019;

Maby et al., 2016). In the same way, the translation of non-coding

regions poses a new source of potential tumor-specific neoantigens

that can activate T cells, as shown in melanoma, lung or liver cancer

(Camarena et al., 2024; Kraemer et al., 2023; Rogel et al., 2011).

Similarly, a stop-loss mutation, where a terminating codon mutates

to a coding one, can lead to continued translation into the 3’UTR.

We hypothesize that such C-terminal peptide extensions constitute an

additional source of immunogenic neoantigens expressed by tumor

cells.
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Frameshift mutations often cause premature stop codons and are

therefore likely to be degraded at the messenger RNA level through

nonsense-mediated decay (Litchfield et al., 2020). On the other hand,

cases of stop-loss mutations without a downstream stop codon are

digested by the nonstop decay surveillance pathway (Klauer and van

Hoof, 2012).

1.2.1 Mutational signatures have been related to response.

The patterns of the trinucleotide context of a mutation can give infor-

mation on the tumor evolution and its underlying driving forces. Many

mutational signatures have been connected to biochemical processes,

intrinsic (DNA damage repair, methylation, oxidation. . . ), and external

(UV radiation, smoking. . . ) factors. In bladder cancer, the activation

of apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like

(APOBEC) family of proteins has been associated with genomic insta-

bility and T>G mutations in a TWC motif (Figure 3)(Glaser et al.,

2017; Weinstein et al., 2014). By the hypermutation of cytosines,

APOBEC3A and APOBEC3B lead to an increased mutational burden

and are believed to induce oncogenesis (Chan et al., 2015; Swanton

et al., 2015).

T

A

T

A

VT

A

C

G
V

APOBEC
Genome instability

TUMOR
EVOLUTION

&
PROGRESSION

Figure 3: Schematic representation of APOBEC-induced mutations. The DNA
sequence TCW has been altered to TTW, a characteristic mutation pattern
attributed to APOBEC cytidine deaminase activity. W-V is a placeholder for
an arbitrary nucleotide pair.
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1.3 Gene expression biomarkers of
immunotherapy response

1.3.1 Immune infiltration

Cancer cells continuously alter their surrounding, the tumor microen-

vironment (TME). The TME consists of the extracellular matrix, blood

vessels, immune cells, fibroblasts, and mesenchymal stromal cells that

interact with and develop around a growing tumor. By activating fi-

broblasts, angiogenesis (the abnormal growth of vessels), and secretion

of cytokines, cancer cells create an immunosuppressive surrounding.

The composition and characteristics of the TME have a direct impact

on prognosis as well as the patient’s sensitivity to treatments. Espe-

cially in the case of immunotherapy, the immune system’s ability to

infiltrate the cancer tissue is a central condition since the recognition

of a presented tumor antigen by the TCR requires physical proximity

of the T cell to the tumor.

A stratification of tumors was proposed based on their level of immune-

inflammation or immune-desertion into ‘hot‘ or ‘cold‘ (Gajewski, 2015).

Later, an additional in-between state, the immune-excluded TME, was

proposed (Hegde et al., 2016). The three immune phenotypes mainly

differ by their state of T cell infiltration. An immune-infiltrated, ‘hot’

tumor has a high presence of active T cells inside the tumor tissue

which has been repeatedly associated with an improved response to

ICI in ovarian, triple-negative breast cancer, and non-small cell lung

cancer (Desbois et al., 2020; Hammerl et al., 2021; Rosenthal et al.,

2019). In the case of the immune-excluded phenotypes, T cells are

only present in the peripheral tissues of the cancer, either due to

missing stimuli or because they are physically blocked by stromal

cells, which leads to a decreased response to ICI. Finally, a ‘cold’, or

immune-deserted tumor lacks T cells both in the tumor tissue and its

surroundings, limiting the initiation of the immune system in response

to ICI, and relates to treatment resistance in melanoma, triple-negative

breast, and ovarian cancer (Desbois et al., 2020; Hammerl et al., 2021).

8 Chapter 1 INTRODUCTION



Although associated with ICI response, this classification into immune

phenotypes simplifies the complexity of the TME. To unravel how the

TME affects immunotherapy, we must dive into its factors and their

interactions in more detail.

Infiltration and inflammation of CD8+ T cells have been repeatedly

associated with improved response to ICIs (Litchfield et al., 2021;

Mariathasan et al., 2018). Different markers for CD8+ T cell infil-

tration have been presented, among them the expression of CD8A
that strongly correlates with T cells in solid cancers (Dangaj et al.,

2019). The migration of immune cells, especially of cytotoxic T cells,

into and within the tumor tissue is orchestrated by pro-inflammatory

chemokines, such as CXCL9/10/11, CCL5, and CXCR3 (Gorbachev

et al., 2007). These molecules are at least partially initiated by another

important proinflammatory cytokine, interferon-gamma (IFN-γ) that

is secreted by lymphocytes in a pro-inflammatory state (Ayers et al.,

2017; Cristescu et al., 2018). Through a positive feedback loop, IFN-γ

enhances its own production in T cells. By activating JAK-STAT1 (Janus

kinase/signal transducers and activators of transcription) signaling,

the chemokine creates an unfavorable TME that induces cancer cell

apoptosis. Further, IFN-γ drives the expression of PD-L1 in cancer

cells, the maturation of naïve T cells to CD8+ T cells, and inhibits

the immune-suppressive regulatory T cells (Ayers et al., 2017). Addi-

tionally, IFN-γ stimulates the polarization of M0 macrophages to the

anti-tumoral M1 phenotype and enhances their chemokine production

(Jorgovanovic et al., 2020). Finally, by destructing endothelial cells

and down-regulating vascular endothelial growth factor (VEGF), it

negatively affects tumor angiogenesis.

In addition to the presence of CD8+ T cells in the TME, the expres-

sion level of the immune checkpoints is an important marker for ICI

response. A patient is unlikely to respond to a treatment blocking the

interaction of PD-L1 if the protein is barely expressed by the tumor

cells (Balar et al., 2017; Chung et al., 2019; O’Donnell et al., 2019;

Schmid et al., 2018). Consequently, the evaluation of PD-L1 status

1.3 Gene expression biomarkers of immunotherapy response 9



obtained from immunohistochemistry assays has been approved by

the FDA for urothelial cancer among other cancer types (Administra-

tion, 2025). Nevertheless, patients cannot be stratified perfectly by

PD-L1 expression into responders and non-responders. The protein is

expressed by different actors in the TME and expression values can be

heterogeneous in the metastases, throughout cancer evolution, and

affected by previous treatments (Mansfield et al., 2016; McLaughlin

et al., 2016; Wang et al., 2019).

Besides CD8+ T cells, the TME contains different cell populations

of the adaptive and innate immune system. Similar to the cytotoxic

CD8+ T cells, supporting CD4+ T cells and B cells express PD-1

(Keir et al., 2008). In comparison to CD8+ T cells, the role of CD4+

T and B cells is less clear. Both secret pro-inflammatory cytokines

such as IFN-γ that have a direct anti-tumor activity. A majority of

CD4+ T cells are T helper (Th) cells that support CD8+ T cells by the

secretion of pro-inflammatory chemokines, like interleukin 2 (Wang

and Livingstone, 2003). In the TME, B cells are less likely to infiltrate

the tumor but rather stay in close proximity, building tertiary lymphoid

structures, presenting antigens to T cells, and secreting inflammatory

cytokines such as IFN-γ (Cabrita et al., 2020; Harris et al., 2000). At

the same time, B cells can produce pro-tumor chemokines and their

presence has been related to a worse prognosis. Over different cancer

types, increased B cell content in the TME has been associated with

ICI response (Cabrita et al., 2020; Helmink et al., 2020; Kim et al.,

2021; Petitprez et al., 2020; Schaafsma et al., 2021). Then again,

other research groups report no association with treatment response

(Damsky et al., 2019).

B and T cells are part of the adaptive immune response, but also

cells of the innate immune system, the body’s nonspecific defense

mechanism, modulate the TME. An important player is tumor-

associated macrophages. Depending on the stimuli, monocyte-derived

macrophages can differentiate into pro-inflammatory M1 macrophages

or wound-healing, anti-inflammatory M2 macrophages that show im-
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munosuppressive activities, promoting angiogenesis and stromal cell

and cancer cell growth (Cassetta and Pollard, 2018). M1 macrophages

primarily secret chemokines to attract cytotoxic lymphocytes and cre-

ate an immune-stimulating environment, but can also kill cells by

intrinsic phagocytosis (Dangaj et al., 2019; House et al., 2020).

1.3.2 Immune suppression

While the immune system is often thought to create an anti-tumor

setting, some players of the immune system can strengthen the pro-

oncogenic TME. Regulatory T (Tregs) cells, a type of CD4+ T cells,

modulate the host’s immune response to prevent autoimmunity and

chronic inflammation. By suppressing T cell proliferation and cytokine

secretion in inflammatory sites, they form an important part of the

immune escape mechanism (Togashi et al., 2019). Their secretion of

growth factors directly supports the growth of cancer cells as well as

fibroblasts and endothelial cells. Such anti-inflammatory cytokines are

the transforming growth factor beta (TGF-β) and interleukin 10 (IL-10)

(Togashi et al., 2019). Especially TGF-β has been intensively studied

in relation to immunotherapy response due to its ability to exclude

CD8+ T cells from the TME (Mariathasan et al., 2018). Consequently,

patients with low T cell infiltration profiles due to high TGF-β show

low response rates to ICI. Moreover, TGF-β is expressed by the anti-

inflammatory M2 macrophages, stimulating the conversion of CD8+ T

effector cells to anti-inflammatory Tregs.

Finally, TGF-β is a crucial player in the generation of cancer-associated

fibroblasts by epithelial-mesenchymal transition (EMT). Stroma cells,

such as endothelial cells, fibroblasts, or lipocytes, build a central part

of the TME. Once the tumor surpasses a size where it can rely on

passive diffusion and before entering hypoxic and acidic conditions,

it will build out its blood vessels for nutrition, oxygen supply, and

waste management. The transition of endothelial cells to cancer-

associated fibroblasts further allows the tumor to migrate and initiate

metastases (Jorgovanovic et al., 2020). In this context, EMT-related

1.3 Gene expression biomarkers of immunotherapy response 11



gene expression has been suggested as a source of immune resistance in

urothelial cancer and is associated with worse response to ICI therapy

(Wang et al., 2018).
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1.4 Molecular subtypes in bladder cancer

Cancer tissue can be highly heterogeneous, which makes it difficult to

come up with a one-fits-all therapy approach. Molecular subtypes are

an attempt to group cancer patients into subgroups based on genetic

mutations, gene expression, or other biomarkers. Especially in breast

cancer, molecular subtypes have shown great clinical significance in

creating treatment standards (Goldhirsch et al., 2013). As a high-

mutational cancer, ICI was approved early for bladder cancer patients.

Nevertheless, it remains the costliest cancer to treat (Michaeli et al.,

2022). Bladder cancer separates into non-muscle invasive and muscle-

invasive bladder cancer, with the latter covering less than 30% of

the cases but being more aggressive, especially when metastatic (5-

year survival rate <10%). After molecular classification of breast

cancer tumors was successfully related to treatment outcome and led

to clinical implications, many attempts were made to propose similar

subtyping for bladder cancer samples based on their transcriptomic

and mutational profiles (Höglund et al., 2023; Kamoun et al., 2020;

Robertson et al., 2017). Usually, clusters for subtypes are obtained

from hierarchical clustering, where each study developed its classifier

on a different patient population. While there is no agreement on

the exact clusters, different groups repeatedly divide the samples into

subgroups within the two supersets basal and luminal. One of the

classifiers, developed on the cancer genome atlas (TCGA) bladder

cancer cohort defined five clusters:

1. Basal-squamous

2. Luminal-infiltrated

3. Luminal-papillary

4. Luminal

5. Neuronal
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The basal-squamous subtype shows a strong expression of basal and

stem markers such as CD44 and KRT5/6A/14, as well as a strong

immune inflammation signature, it has been repeatedly related to a

positive response to immunotherapy (Kamoun et al., 2020; Robertson

et al., 2017). Similarly, the luminal-infiltrated subtype is defined by

a high infiltration of lymphocytes as well as a strong expression of

uroplakins and EMT markers, and it was found to relate to response

in one study (Robertson et al., 2017). In another urothelial cohort,

only the two least common subtypes luminal and neuronal subtype

were related to response to the anti-PD-L1 atezolizumab (Kim et al.,

2019). Neuronal is characterized by neuroendocrine differentiation

and shows poor survival rates, consistent with the high aggressiveness

of neuroendocrine bladder cancer (Robertson et al., 2017).

1.4.1 Prediction models for ICI response

The development of predictive models for therapy outcomes repre-

sents a critical step toward the realization of personalized medicine

in oncology. As discussed in the previous paragraphs, tumor is a het-

erogeneous disease and a patient’s response to immunotherapy has

high variability. In addition, immunotherapies are often expensive and

can have severe adverse effects. Reliable models to predict treatment

responses could give valuable insights into underlying biological pro-

cesses and eventually enable clinicians to tailor therapies to individual

patients to improve overall outcomes. The field of medical prediction

models profited from recent progress in two fields. Firstly, the advance-

ments in next-generation sequencing techniques allow researchers to

generate large-scale data faster at a decreasing financial cost. In this

regard, research can take advantage of data sharing initiatives such

as TCGA, or other international consortia and collaborations, making

the data available to other scientists. Secondly, the rapid development

of machine learning and artificial intelligence has provided powerful

tools to analyze complex, multi-omics data, increasing our capacity to

build predictors beyond simple biomarker-based frameworks.
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Pan-cancer studies combine data from multiple cancer types to leverage

the power of large datasets. This approach has clear advantages, but it

also comes with notable challenges. By aggregating data across can-

cer types, pan-cancer studies benefit from larger sample sizes, which

are crucial for training and testing robust machine learning models.

These studies can uncover shared molecular mechanisms or biomark-

ers across cancer types, which may point to fundamental principles

of tumor biology and more general predictors of immunotherapy re-

sponse. However, different cancer types often have distinct molecular

and clinical characteristics. Tumor-specific factors are obscured by

pooling data, leading to oversimplified models that fail to capture the

heterogeneity of individual cancer types. Further, combining data from

multiple cancer types can introduce confounding variables, such as

varying clinical protocols, molecular features, or treatment regimens

across cancers, which may bias the results.

One big study from 2021 analyzed seven cancer types from over 1000

patients treated with different ICIs. The very large sample size and

multi-omics data allowed them to outline some common features of the

tumor antigen recognition and T cell initiation shared among cancer

types (Litchfield et al., 2021). Depending on the selected features

and test cohort, the AUC varies between 0.63 and 0.79 for a simple

TMB and CXCL9 model, and 0.66 to 0.86 for the full model. Another

study of similar sample size focussed on mutation data to build a gene

signature associated with overall survival to ICI (Long et al., 2022).

Other groups related gene signatures obtained from expression data of

smaller pan-cancer datasets to immunotherapy response (Benguigui

et al., 2024; Hernando-Calvo et al., 2023; Long et al., 2022).

Focusing on a specific cancer type allows for more tailored analyses

but comes with its limitations. These studies can uncover nuances and

mechanisms specific to a given cancer type, providing more actionable

insights for disease-specific treatment and management. This allows

features included in the model to be more relevant and less diluted

by irrelevant features from other tumor types, potentially improving
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their predictive accuracy. With an increased number of studies on

bladder cancer patients who received ICI treatment, groups built the

first cancer-specific prognostic and prediction models using only this

tumor type (Abuhelwa et al., 2021; Damrauer et al., 2022; Pond et al.,

2018). The main drawback in cancer-specific studies is the amount

of available data. Machine learning models require large datasets to

be trained, tested and validated appropriately. Models limited to one

cancer type are often developed on one or two datasets and frequently

lack external datasets for validation, making it difficult to assess their

generalizability and robustness. Small datasets therefore increase the

risk of overfitting, where the model performs well on the training data

but poorly on unseen data. While bladder cancer-specific prediction

models have provided valuable biological insights, their ability to

predict immunotherapy response depends strongly on the closeness of

the test to the training cohort, reflected in the big range of AUC values

(Damrauer et al., 2022).

Both pan-cancer and cancer-specific studies are influenced by the

quality of the datasets. Differences in patient populations, sequenc-

ing platforms, and data preprocessing pipelines can lead to biases or

irreproducible results. Batch effects can make it difficult to distin-

guish biological signals from technical artifacts. Furthermore, machine

learning models are often complex and lack interpretability, making it

difficult for clinicians to trust and adopt them in practice.

In an ideal world, models could be fed larger, more diverse datasets ca-

pable of capturing the subtle heterogeneity within patient populations,

obtained from standardized data processing frameworks to minimize

technical biases. While the clinical application of predictive models for

immunotherapy remains distant, each iterative advance builds toward

the ultimate goal of personalized oncology. By understanding the

strengths and shortcomings of current approaches and existing tools,

this thesis seeks to identify critical knowledge gaps and contribute

to the foundation for further advancements to a more personalized

cancer medicine.
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Figure 4: The role of immune cells in the tumor microenvironment depends on
context and stimulation. Besides tumor cells, solid cancers consist of a
mixture of stromal cells and cells of the adaptive and innate immune sys-
tem, inducing either an anti-tumor environment (left) or promoting tumor
growth (right). Cytotoxic CD8+ T cells kill cancer cells upon recognition
of tumor antigens (1). By secreting IFN-γ they suppress angiogenesis and
promote the differentiation of CD8+ T cells and M1 macrophages (2-3).
M1 macrophages secret pro-inflammatory cytokines like CXCL9/10 that
attract more T cells to the tumor site (4). In the presence of cytokines
such as TGF-β, naïve and CD8+ T cells differentiate to regulatory T cells
(5). These cells support tumor growth by secreting growth factors (6) and
anti-inflammatory cytokines such as TGF-β (7), which is also secreted by
M2 macrophages. TGF-β is further inducing the transition of endothelial
cells to cancer-associated fibroblasts (8), enhancing tumor migration and
angiogenesis. This figure simplifies the interactions of the tumor microen-
vironment, focusing on key components and omitting certain chemokines
and immune cells.
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Figure 5: The five TCGA subtypes in bladder cancer. Adapted from Robertson
et al. (2017) and Kamoun et al. (2020). The immune infiltration column
indicates the state of immune infiltration in the subtypes, based on Robert-
son et al..
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2OBJECTIVES

The overall aim of my thesis is to deepen the biological understanding

of the markers and drivers that lead to ICI response across various

solid cancer types, with a particular focus on bladder cancer. In order

to fulfill this aim, the following specific objectives are set:

1. Integration of Omics Data from Tumors

To set up a comprehensive pipeline for analyzing genomic and

transcriptomic data from cancer patients.

2. Biomarker Characterization

To characterize and validate known biomarkers as well as unravel

novel factors related to immunotherapy response, identifying the

most relevant variables in the complex interplay between tumor

biology, the immune microenvironment, and treatment response.

3. Impact of Molecular Subtypes on ICI response

To investigate the impact of bladder cancer molecular subtypes on

the response to ICI treatment and study the interplay of reported

biomarkers within these subtypes.

4. Prediction Model Development

To develop a robust bladder-cancer specific prediction model of

immunotherapy response, integrating diverse sources of omics data.

5. Stop-Loss Mutation Analysis

To conduct an in-depth analysis of stop-loss mutations, their role in

cancer development, and their potential to generate tumor-specific

neoantigens.
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Section 3.1 of this thesis combines the first and to some extent the

second objective. Here I conduct a comprehensive analysis of a single

advanced urothelial bladder cancer cohort treated with anti-PD-1/anti-

PD-L1. While this single cohort allowed me to develop a compre-

hensive framework to analyze genomic-based and gene expression

markers and provided valuable biological insights into ICI response in

bladder cancer, it also shows that to achieve objective two, more data

is needed.

Objective two is therefore further addressed in the second result sec-

tion, together with objectives three and four. Building on the results of

part one, this work combines and harmonizes six datasets to construct

the currently largest bladder cancer-specific cohort. The comprehen-

sive sample size enhances the statistical power, enabling the validation

of several trends observed in the first part as statistically significant. It

further allows the discovery of additional biomarkers such as the effect

of stop-loss mutations and tumor-specific long-non-coding RNAs on

ICI response, providing deeper insights into ICI response mechanisms.

Furthermore, this part delves into the role of molecular subtypes in

advanced bladder cancer, exploring their impact on treatment response

and biomarker interplay. Finally, bladder cancer-specific prediction

models for ICI response are developed and presented, integrating di-

verse sources of omics data to enhance predictive accuracy and clinical

applicability.

The last part of my thesis addresses the potential role of stop-loss

mutations in various cancer types. To approach this, I generated and

downloaded available mutation data to extract stop-loss mutations.

Profiting from the computational pipeline set up at the beginning of

the project, I have predicted the C-terminal extensions resulting from

stop-loss mutations and their potential to be presented by the tumor

cell. Immunopeptidomics data served as experimental proof of the

expression and processing of such stop-loss mutations.

By achieving these objectives, this thesis aims to provide novel insights

into the mechanisms underlying ICI response, with a particular focus
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on bladder cancer. The findings will contribute to a more nuanced un-

derstanding of tumor-immune interactions, inform biomarker discov-

ery and validation, and pave the way for the development of clinically

relevant predictive tools that can guide personalized immunotherapy

strategies in cancer treatment.
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The impact of mutational clonality 
in predicting the response 
to immune checkpoint inhibitors 
in advanced urothelial cancer
Lilian Marie Boll 1,7, Júlia Perera‑Bel 1,7, Alejo Rodriguez‑Vida 1,2,3, Oriol Arpí 1, Ana Rovira 1,2,3, 
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Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment and can result in complete 
remissions even at advanced stages of the disease. However, only a small fraction of patients respond 
to the treatment. To better understand which factors drive clinical benefit, we have generated whole 
exome and RNA sequencing data from 27 advanced urothelial carcinoma patients treated with 
anti-PD-(L)1 monoclonal antibodies. We assessed the influence on the response of non-synonymous 
mutations (tumor mutational burden or TMB), clonal and subclonal mutations, neoantigen load 
and various gene expression markers. We found that although TMB is significantly associated with 
response, this effect can be mostly explained by clonal mutations, present in all cancer cells. This 
trend was validated in an additional cohort. Additionally, we found that responders with few clonal 
mutations had abnormally high levels of T and B cell immune markers, suggesting that a high immune 
cell infiltration signature could be a better predictive biomarker for this subset of patients. Our results 
support the idea that highly clonal cancers are more likely to respond to ICI and suggest that non-
additive effects of different signatures should be considered for predictive models.
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Cancer is among the greatest burdens of disease in high- and middle-income countries, with urothelial cancer 
being the sixth most common cancer type in men globally1. Genetic aberrations play an important role in the 
development of urothelial cancer. Somatic variants resulting in mutated proteins can be processed and presented 
on the tumor cell’s surface as small peptides called neoantigens. Neoantigens are tumor-specific, and thus, have 
a selective potential for T cell recognition2. One way tumors cells evict immune escape is by overexpressing 
checkpoint inhibitors. When binding to the ligand on the T cell surface, an immune response is suppressed 
by downregulating the production of cytokines, effector functions and T cell proliferation3. In urothelial car-
cinoma, high expression of the checkpoint molecule programmed death-ligand1 (PD-L1) has been associated 
with advanced cancer stages and poor survival4.

Immune checkpoint inhibitors (ICIs) have been a major advance in immunotherapy in the past decade. 
Monoclonal antibodies block immune checkpoints to prevent tumor cells from escaping T cell recognition. 
To date, several PD-1/PD-L1 inhibitors have been approved by the FDA and EMA, for patients with advanced 
urothelial cancer. However, less than one-third of urothelial cancer patients respond to ICI treatment5–8. Accurate 
methods to predict which patients are going to respond to the treatment are currently missing and are urgently 
needed in the clinics.

Based on the assumption that a higher tumor mutational burden (TMB) translates to an increased neoan-
tigen load, TMB is nowadays one of the most relevant biomarkers currently being studied for clinical use in 
urothelial cancer7,9,10. However, findings are inconsistent across studies, and the isolated use of TMB has not been 
shown to accurately differentiate between responders and non-responders8,11,12. One possible way to improve 
the accuracy of the predictions is to consider neoantigen quality in addition to quantity13. Several computational 
prediction programs exist to estimate characteristics of neoantigens such as the ability to form a stable complex 
with the major histocompatibility complex (MHC) receptor or the probability of immune cell recognition. Yet, 
experimental studies showed that many of these computationally predicted epitopes are not presented on the 
cell surface14, limiting the applicability of these approaches.

Previous efforts to investigate the impact of different biomarkers in the response to ICI have mostly centered 
on melanoma and lung cancer—the cancers with the largest number of mutations—or in the meta-analysis of 
different types of cancer. These studies have suggested that the clonality of the mutations might be especially 
relevant. For example, McGranahan et al. showed that sensitivity to PD-1 and CTLA-4 blockade in patients with 
advanced non-small cell lung cancer and melanoma was enhanced in tumors enriched for clonal neoantigens15. 
These findings are consistent with Wolf et al. who report that clonal neoantigens relate to immune infiltration 
and clinical outcome in melanoma16. Another study including patients with urothelial cancer treated with ICIs 
targeting PD-1/PD-L1 and CTLA-4 found that clonal mutations were significantly higher in complete responders 
compared to non-responders or partial responders17. Finally, Litchfield et al.18, who performed a meta-analysis 
of biomarkers from different cancer types, found that clonal TMB was the strongest predictor of CPI response 
followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocom-
patibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance.

In order to gain knowledge on what might drive the response to monoclonal antibodies blocking the pro-
grammed cell death-1 (PD-1) or its ligand (PD-L1) in advanced urothelial cancer, and how this compares to 
other kinds of cancers, we performed an in-depth study of whole exome and RNA sequencing data from a cohort 
composed of 27 patients treated with ICIs targeting PD-1/PD-L1 from Hospital del Mar in Barcelona (Spain). 
As an independent dataset, we also analyzed somatic variation in urothelial cancers from a 25 patients cohort 
treated with the PD-L1 inhibitor atezolizumab at Memorial Sloan Kettering Cancer Center8. The results provide 
additional novel insights into the genomic correlates associated with immunotherapy response and suggest ways 
in which predictive models could be improved.

Results
Genomic analysis and cohort description.  We generated whole-exome sequencing (WES) and RNA 
sequencing (RNA-Seq) data from tumors and blood samples from 27 advanced urothelial cancer patients treated 
with anti-PD-1/PD-L1 ICIs at Hospital del Mar (Fig. 1a). WES data was obtained from the tumors before treat-
ment as well as from blood samples, allowing reliable identification of cancer-specific mutations. The type of 
response to treatment was defined using the Response Evaluation Criteria In Solid Tumors (RECIST) criteria 
1.1. Among the 27 patients whose tumors were sequenced, 17 were responders to the ICI treatment (12 partial, 
5 complete), and 10 were non-responders. Complete response is described as the complete disappearance of the 
tumor tissue, partial response a decrease of the target lesion by at least 30%. Additionally, we obtained high-
quality RNA-Seq data from tumor samples in 20 patients of which 13 were responders to the ICI treatment (8 
partial, 5 complete responses) and 7 were non-responders (progressive disease). The mutational data was used to 
investigate the effect of the number and type of mutations in response to treatment, as well as to predict putative 
neoantigens on a patient basis. The gene expression data was used to investigate the impact of different immune-
based markers in ICI response.
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Figure 1.   Analysis of omics data from the metastatic urothelial cancer cohort at Hospital del Mar. (a) Study design. We performed 
whole exome sequencing (WES) and RNA sequencing (RNA-Seq) from a cohort of 27 patients. The cohort included 17 responders 
(partial or complete response) and 10 non-responders (progressive disease). We measured the differences in the distribution of several 
biomarkers, including clonal and subclonal TMB, mutational signatures, number of predicted mutation-induced neoantigens and 
gene expression signatures in responders and non-responders. Created with BioRender.com. (b) Tumor mutational burden (TMB) 
compared to different TCGA cancer cohorts. The number of non-synonymous mutations in the cohort in our cohort (HdM-BLCA-1) 
was very similar to the bladder cancer TCGA cohort and in accordance with this being a highly mutated cancer. The names below 
the plot represent the TCGA cohort abbreviation, the numbers above represent the cohort sizes. (c) Frequencies of different pairwise 
nucleotide substitutions. C->T mutations were the most frequent ones, followed by C->G. TI transition, Tv transversion. (d) Cancer-
related frequently mutated genes. Missense, frameshift and nonsense mutations are shown. Genes have been classified into ‘Oncogenes’, 
‘Tumor suppressor genes’ and ‘Function unclear’ based on previous knowledge. NR no responders, R responders.
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Estimation of tumor mutational burden and identification of recurrently mutated 
genes.  Overall, we identified 6989 cancer-specific non-synonymous mutations. Most mutations were mis-
sense, 6192 (88.6%), but we also detected 490 nonsense (premature stop codons) and 130 frameshift mutations. 
We calculated the TMB for each patient as the sum of non-synonymous mutations. The average TMB of the data-
set was 5.18 mutations per Mb, comparable to that observed in the cancer genome atlas (TCGA) bladder cancer 
cohort (Fig. 1b). Among pairwise nucleotide substitutions, C->T mutation was the most common (Fig. 1c), with 
a median frequency of around 0.5, very similar to that observed in the TCGA bladder cancer dataset (Figure S1) 
(18). The second most common mutation was C->G. We also specifically searched for the APOBEC signature, 
which has been previously found to be frequent in urothelial cancer19,20. APOBEC cytidine deaminases have the 
ability to introduce mutations in chromosomal and mitochondrial DNA potentially driving oncogenesis21. In 
the APOBEC signature C mutates to G or T in the context of TCW motifs (where W is A/G). Using the maftools 
package22, we found that this signature was significant in 16 out of 27 sequenced tumors.

We identified previously described driver and tumor suppression genes that were mutated in more than one 
patient in our cohort. These included genes in pathways related to TP53/cell cycle (TP53, RBI, ATM), histone 
modification (KDM6A, EP300, KMT2A/C/D), DNA damage (BRCA1/2) and chromatin remodeling (ELF3, 
ARID1A, ARID1B, ARID2)19,23,24 (Fig. 1d). The two most mutated genes were ELF3 and KMT2D, with altera-
tions in 8 patients. ELF3 is an important transcriptional regulator for the differentiation of the urothelium with 
a high mutation frequency in bladder cancer25, and histone-lysine N-methyltransferase genes (KMT2A/C/D) 
are among the most mutated in different cancer types26,27. The majority of changes in ELF3 were frameshift and 
nonsense mutations, similar to the findings of Nordentoft et al.24. In contrast, in KMT2D, 7 out of 8 mutations 
were missense.

Tumor mutational burden is significantly associated with the response to ICI.  Next, we inves-
tigated the relationship between different types of mutations and the response to treatment. We found that the 
number of non-synonymous mutations or TMB was significantly higher in responders than in non-responders 
(Fig. 2a, Wilcoxon test p value = 0.046). This is in agreement with previous observations for different cancer 
types17,18,28–30. Additionally, we found that the number of nonsense mutations was also higher in responders than 
in non-responders (Fig. 2b). Responders also tended to have more frameshift mutations than non-responders, 
although in this case, the difference was not statistically significant (Fig. 2c).

Clonal TMB better separates responders from non‑responders than total TMB.  Some mutations 
in the tumor are present in all cells (clonal), whereas others are only present in a subset of the cells (subclonal). 
We used the cancer cell fraction (CCF) statistic, in which the initial allele frequencies are corrected by tumor 
purity and copy number, to estimate the number of clonal mutations in each sample. Mutations with a CCF > 0.9 
were considered clonal. This accounted for 2243 mutations, 1963 (87.5%) of which were missense mutations 
(Additional file 2). We observed that clonal mutations were overrepresented among recurrently mutated genes 
(see previous section): 73 out of 137 mutations in these genes were clonal. This is significantly higher than the 
expected number given that 28% of the mutations were clonal (Chi-square test, p < 0.0001).

We found multiple lines of evidence that clonal mutations had a disproportionately higher impact in the 
response to the treatment when compared to other types of mutations. First, the samples of responders were 
strongly enriched in clonal mutations when compared to those of non-responders; the average percentage of 
clonal mutations in responders was twice the percentage in non-responders (34.32% versus 17.34%, Fisher’s exact 
test p value = 0.007) (Fig. 2d). Second, when computing clonal TMB instead of total TMB, the differences between 
responders and non-responders clearly increased; for clonal mutations, the difference between the median values 
of the two groups showed an × 1.7 increase, and there was less overlap between the two distributions (Fig. 2e 
versus 2a). In contrast, there were no statistically significant differences in subclonal TMB between responders 
and non-responders (Fig. 2f, Wilcoxon test p value = 0.24). Third, we found that, for clonal mutations, there 
was an enrichment in APOBEC induced mutations in responders compared to non-responders (p value = 0.03, 
Figure S2); this effect was not observed when considering all non-synonymous mutations (p value = 0.44).

We checked if the above observations could be driven by the subset of complete responders. However, we 
did not observe a statistically significant difference in total, clonal or subclonal TMB when comparing complete 
responders and partial responders (Figure S3), indicating that this is not the case.

To better understand the possible implications for the prediction of response to ICI, we applied different 
TMB thresholds in steps of 1 and we classifed the patients into responders (observed TMB above threshold) and 
non-responders (observed TMB below threshold). Then, we calculated the true positive and true negative rate 
for each threshold. Clonal TMB performed best in the threshold model with an AUC of 0.77, followed by total 
TMB with an AUC of 0.72 and subclonal TMB with an AUC of 0.62 (Fig. 3). Clonal TMB was particularly useful 
to identify true responders while keeping the false positive rate low (specificity 0.8–0.9).

Inspection of available mutation data from an independent urothelial cancer cohort, published by Snyder 
et al., also indicated that mutations occurring at high frequencies were especially important in explaining the 
response8. As no information on tumor cell purity or cell fraction was available for this dataset, we used the vari-
ant allele frequency (VAF), instead of the cancer cell fraction (CCF), as a proxy of mutation frequency. Similar to 
what we observed in our cohort, the difference between the median TMB values of responders to non-responders 
increased with increasing VAF (Fig. 4). The maximum difference was at VAF > 0.45, which essentially represents 
clonal mutations.

The positive relationship between predicted neoantigens and response mirrors that observed 
for TMB.  One likely explanation for the association of TMB with response to treatment is that a subset of 
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these mutations will generate neoantigens that trigger an immune system response against the tumor. Among 
neoantigen presentation, binding affinity is thought to be the most selective step2. We predicted the MHC I bind-
ing affinity of all possible peptides originating from missense mutations in the tumors using the software NetM-
HCpan 4.031. Because MHC I receptors are highly variable among individuals, and each molecule has different 
epitope affinities32, we first computed the human leukocyte antigen (HLA) genotype for each patient and then 
used the specific HLA subtypes for the predictions. Following the NetMHCpan recommendations, we defined 
the set of putative MHC I bound peptides as those within the 2% top binding rank.

Regarding the relationship with ICI treatment response, we observed significantly more binders in responders 
than in non-responders (p value = 0.035, Fig. 5a). The difference became more significant when only considering 
clonal mutations (p value = 0.015, Fig. 5b). In contrast, no significant difference between treatment groups was 
found in the case of subclonal mutations (p value = 0.13, Fig. 5c). Similar conclusions were drawn when using 
the concentration that inhibits 50% binding of the fluorescein-labeled reference peptide (IC50), or more stringent 
thresholds (Figure S4), as well as when using a second MHC binding prediction software, MHCflurry 2.0 (Fig-
ure S5). The results are consistent with a positive effect of the number of neoantigens that are being presented 
on the response to the treatment.

Factors other than the peptide MHC binding affinity can also influence neoantigen presentation and 
immunogenicity2. One such factor is the stability of the peptide-MHC (pMHC) complex33,34. However, we did 
not find any significant difference between the number of predicted highly stable pMHC complexes and the 
response to treatment (Figure S6). Another approach to predict a peptide’s relative immunogenicity is its dif-
ferential agretopicity index (DAI)35. This index measures the difference in the binding affinity of the mutated 
peptide compared to its non-mutated counterpart. We observed that mutated peptides in non-responders tended 
to show lower DAI values compared to those in responders but, again, this trend did not achieve statistical 
significance (Figure S6).

We then asked whether the difference between responders and non-responders could increase in the case of 
mutations that generated new binders. Using a binding rank < 2% threshold, we identified a total of 2175 new 

Figure 2.   TMB and clonal TMB are significantly associated with the response to ICI. (a) Relationship 
between TMB and response to ICI treatment. TMB values were significantly higher in responders than in 
non-responders (Wilcoxon test, p value = 0.046). (b) Relationship between stop mutations and response to 
ICI treatment. Nonsense mutations were significantly higher in responders than in non-responder (Wilcoxon 
test, p value = 0.037). (c) Relationship between frameshift mutations and response to ICI treatment. Frameshift 
mutations showed a trend of being more abundant in responders than non-responders but the difference was 
not statistically significant (p = 0.3). (d) Number of mutations per patient divided in clonal and subclonal. The 
proportion of clonal mutations is significantly higher in responders (Fisher’s exact test p value = 0.007). (e) 
Relationship between clonal TMB and response to ICI treatment. Clonal TMB values were significantly higher 
in responders than in non-responders (Wilcoxon text, p value = 0.017). (f) Relationship between subclonal TMB 
and response to ICI treatment. Responders tend to have higher values but the difference between responders 
and non-responders is not statistically significant. NR no responders, R responders, triangle shape represents 
complete responders among the group of responders.
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putative peptide binders created by cancer-specific mutations, and another 1901 peptides in which the mutation 
caused the peptide to lose its ability to bind to MHC I. The new binders were enriched in hydrophobic amino 
acids, including tyrosine (Y), phenylalanine (F), leucine (L) and tryptophan (W), as well as histidine (H), when 
compared to mutations causing no change in binder status (Figure S7). In contrast, mutations associated with 
loss of binding to MHC I were enriched in cysteine (C) and, to a lower extent, glycine (G). We also observed that 
amino acid replacements that changed the binding status of the peptide tended to be located in the 2nd and 9th 
position of the peptide. These results are consistent with previous observations that hydrophobic residues are 
associated with increased immunogenicity36,37, and that the 2nd and 9th amino acids of the peptide are anchor 
positions to the MHC I receptor37,38. When responders and non-responders were compared, we again observed 
increased separation between the groups for clonal mutations compared to other types of mutations (Figure S8). 
The magnitude of this effect, however, was not larger than when all possible kinds of neoantigens were considered.

Figure 3.   Clonal TMB performs better in separating the two response groups in a threshold model than total 
TMB. Thresholds to separate response groups in steps of TMB = 1 mut/mB were applied. Sensitivity or true 
positive rate (TPR) was calculated as the number of true positives divided by the number of true positives + false 
negatives. Specificity or false positive rate (FPR) was calculated as the number of true negatives divided by the 
number of true negatives plus false positives.

Figure 4.   Effect of mutation frequency on the discrimination between responders and non-responders. TMB 
ratio: ratio of the median TMB of responders versus the median TMB of non-responders. Mutation frequency: 
minimum variant allele frequency that we consider to calculate TMB. The difference in TMB between 
responders and non-responders increases with mutation frequency, with maximum values at a mutation 
frequency of 0.45 in both cohorts.
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We also examined whether, independently of the response, the loss of binder mutations was relatively more 
frequent among clonal mutations than subclonal ones, this could be expected if this type of mutation is particu-
larly favored in the initial stages of cancer when mechanisms to avoid immune system surveillance might be 
weaker. We found that, while the ratio of the number of loss of binder mutations versus gain of binder mutations 
was indeed higher for clonal than for subclonal mutations (0.93 versus 0.84, respectively), the difference was 
not statistically significant.

Pathways associated with response and immune response markers.  In addition to the afore-
mentioned genomic characteristics of neoantigens and the peptide-MHC complex, the tumor environment and 
other molecular mechanisms are known to play a crucial role in the activation of an immune response. We used 
the gene expression data to impute tumor-immune cell infiltration abundances using CIBERSORT. We found 
no significant differences in the overall immune infiltration score between responders and non-responders, but 
the former group had a significantly higher fraction of CD4 memory-activated T cells (p = 0.029, Figure S9a). 
Next, we examined the gene expression patterns of different immune markers and gene expression signatures 
(RNA-Seq data for 20 patients, 13 responders, 7 non-responders). We found that the median expression value of 
pro-inflammatory markers, immune checkpoints and MHCII antigen presentation genes, tended to be higher in 
responders than non-responders (Fig. 6a, Figure S9b). In their multivariable predictor model, Litchfield et al.18 
reported gene expression values of cytokine CXCL9 to be among the strongest predictors for ICI response. In 
our cohort, CXCL9 had more than twice the median value in the responders group (Figure S9b). Other markers 
related to CD8 T cell immune response, such as CD45, CD8A, and interferon-gamma pathway genes showed 
a similar expression pattern. Genes involved in B cell-mediated immunity and MHC class II also tended to be 
enriched in responders. On the contrary, gene expression of the transcription growth factor beta (TGF-β) was 
found to be decreased in responders compared to non-responders (Fig. 6a). This result is expected given that 
TGF- β is generally associated with an immunosuppressive effect39.

Analyzing the expression patterns of combinations of genes instead of individual genes can sometimes provide 
a clearer signal. Using gene set enrichment analysis (GSEA) identified several pathways significantly enriched in 
the responders group (FDR p value < 0.05). This included DNA damage repair (DDR), proliferation, apoptosis, 
ubiquitination and pro-inflammatory functions upregulated in responders (Fig. 6b, Figure S10). These pathways 
are very interrelated and are expected to play a role in ICI response. Additionally, non-responders were charac-
terized by higher expression of anti-inflammatory cytokines like IL4 and IL6, extracellular matrix organization 
and TGF-β related pathways (Fig. 6b, Figure S10). Analyses performed grouping the genes by Gene Ontology 
(GO) classes or using molecular pathways produced consistent results (Figures S10, S11a).

We then investigated if there were any differences in gene expression patterns between complete respond-
ers (n = 5) and partial responders (n = 8). We found significant differences at the level of T cell-mediated and 
humoral immunity (Figure S11). Therefore, immune players beyond the classical MHC-I-CD8 T axis, such as 
those mediated by MHC class II, might be important.

Another interesting observation was that the subset of responders that had the lowest number of mutations 
(samples R1, R2 and R3; TMB < 3.5 mut/Mb) also had the highest levels of T and/or B cell infiltration markers 
(Fig. 6b). These patients would most likely have been missed by any TMB threshold method (the majority of the 
responders had TMB > 5 mut/Mb) but could have been identified using a signature based on immune markers.

Figure 5.   The positive relationship between predicted neoantigens and response mirrors that observed for 
TMB. (a) Relationship between the number of putative binders and the response to the treatment. Responders 
have a significantly higher number of putative binders than non-responders (Wilcoxon test, p value = 0.047). 
(b) Relationship between putative binders originating from clonal mutations and response to ICI treatment. 
Number of putative binders originating from clonal mutations is significantly higher in responders than in 
non-responders (Wilcoxon test, p value = 0.018). (c) Relationship between putative binders originating from 
subclonal mutations and response to ICI treatment. No significant difference can be observed for the number 
of putative binders originating from subclonal mutations between responders and non-responders. NR no 
responders, R responders, triangle shape represents complete responders among the group of responders.
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Figure 6.   (a) Responders with low clonal TMB show expression of genes connected to immune infiltration, 
while non-responders have higher expression of immune suppression. Gene expression for selected marker 
genes sorted by pathways. Expression values are normalized and log2cpm transformed. The heatmap is scaled 
by row. Annotation bars show immune infiltration as CIBERSORT score, tumor mutational burden (TMB) 
and clonal tumor mutational burden (clonal TMB) and response to ICI treatment. Columns indicate the 
patient tumor samples. NR no responder, PR partial responder, CR complete responder. Only a few genes 
were statistically significant in the DE analysis (*p value < 0.05). (b) REACTOME pathways connected with 
proliferation, DNA damage repair, antigen presentation and pro-inflammation are significantly enriched in 
responders, and anti-inflammation pathways are enriched in non-responders. Normalized enrichment score for 
selected pathways significantly related to response obtained from GSEA analysis (adjusted P < 0.05; comparing 
13 responders and 7 non-responders). The complete list of pathways with the included genes is provided in 
Additional file 3.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15287  | https://doi.org/10.1038/s41598-023-42495-2

www.nature.com/scientificreports/

Discussion
Our findings indicate that the number of clonal non-synonymous mutations (clonal TMB) is the strongest pre-
dictor of the response to ICI in advanced urothelial cancer, suggesting that focusing on this biomarker could sig-
nificantly improve the identification of the patients who are more likely to benefit from treatment. The results are 
well-aligned with previous findings for melanoma and non-small cell lung cancer, in which the burden of clonal 
neoantigens and a low intra-tumor heterogeneity have been associated with an increased response to ICI15,16. In 
the study of Miao et al., which included a range of cancer types including urothelial cancer, the authors reported 
that the number of clonal non-synonymous mutations was significantly higher in complete responders than in 
partial responders or non-responders17. Instead, we could not see differences in the number of clonal mutations 
between complete responders and partial responders. Finally, Litchfield et al. (2021) constructed multivariate 
predictive models and observed that models considering only TMB and CXCL9 attained AUC values between 
0.63 and 0.79 depending on the test cohort, which was only marginally lower than the full model containing 
eleven different variables18.

We found that the separation between responders and non-responders in our cohort increased as we consid-
ered mutations with a higher allele frequency, the same effect being observed using data from an independent 
urothelial cancer cohort by Snyder et al.8. Using a mutation threshold predictive model, the AUC values for clonal 
TMB were higher than those for total TMB (0.77 versus 0.72). In addition, we found that the ratio of clonal versus 
subclonal mutations was significantly higher in responders than in non-responders, suggesting that tumors in 
the responder group are less heterogeneous. A study using a UV-induced mouse melanoma model showed that 
tumor heterogeneity diminishes the immune response16. Taken together, the results indicate that the predictive 
power of TMB can be significantly increased if we only consider clonal mutations.

The APOBEC signature has been previously associated with the response to ICI in different types of cancer 
including urothelial cancer17,38. APOBEC-mediated mutagenesis becomes activated in early disease stages21,24,40 
and has been associated with mutation hotspots of several cancer driver genes41. In urothelial cancer, the 
APOBEC signatures are suggested to drive high TMB by introducing genomic instability42. Additionally, both 
the APOBEC signature and high TMB are related to better survival in urothelial cancer patients, independently 
of treatment and in the context of anti-PD-L1/PD-1 ICI42,43. In our study, we did not find a significant positive 
association between APOBEC and the response to treatment, except when we measured the APOBEC signature 
specifically in clonal mutations. A potential explanation could be that APOBEC mutations are associated with 
increased peptide hydrophobicity, as shown by Boichard et al.38. This could increase the likelihood of generating 
immunogenic neoantigens36,37.

A detailed inspection of the mutations revealed that many known oncogenes and tumor suppressor genes 
were frequently mutated in our patient cohort. The topmost mutated genes were ELF3, KMT2D, ARID1A, TP53 
and PRKDC; these genes were mutated in 6 patients or more (> 20% of the patients). Interestingly, a recent study 
found that recurrent somatic mutations in several cancer-related genes and pathways, including the MAPK 
signaling and TP53 cycle pathways, increased the predictive power of the predictive models over just using TMB. 
Given that a large portion of the mutations in these genes are clonal, these results also point to the importance 
of tumor clonality in the response to immunotherapy.

We also examined the relationship between the number of predicted MHC-I binding peptides per patient 
and ICI treatment response as described in previous studies31,44. We found that, similar to TMB, the clonality 
of the mutations generating the predicted neoantigens increased the difference between response groups. For a 
subset of the somatic mutations, the mutation increased the binding of the peptide to MHC I above the threshold, 
potentially generating a new binder. Again, we found that the number of new binders was significantly higher 
in responders versus non-responder in the case of clonal mutations. Further studies based on experimental data 
might help disentangle the importance of different types of neoantigens. It has been reported that mutations are 
more likely to be observed in tumors if the resulting peptides have low affinity for the patient’s MHC I receptors45. 
Although we observed a tendency for increased loss of binding mutations in clonal mutations versus subclonal 
ones, the results were not conclusive. We expect, however, that these analyses will encourage future studies to 
understand selective processes involved in immune evasion.

The gene expression analysis of immune markers and immune cell invasion indicated that T cell immune 
infiltration is an important factor in determining response to the treatment, as found in other studies8,18,39. A 
high neoantigen load will not elicit an immune response if the tumor is not invaded by T cells and consequently, 
the ICI treatment will be ineffective. Using gene set enrichment we observed that genes involved in proliferation, 
DNA damage response, antigen presentation, and pro-inflammatory responses were significantly associated 
with response to treatment. Additionally, we saw higher immune infiltration of CD4 memory T cells as imputed 
by deconvolution, and increased expression of CD8 T cell markers in responders. High tumor infiltration of 
CD8 T cells has been associated with improved clinical outcome through the activation by MHC I presented 
antigens in urothelial bladder cancer46. On the contrary, T regulatory (Treg) cells are described to be tumor-
promoting agents47. Our results indicated a negative association between ICI response and both Treg and Tfh 
cells, although it did not achieve statistical significance. The latter type of T cells expresses a large number of 
PD-1 on their surface. It has been suggested that anti-PD-1 treatment could cause immune-related adverse 
events (ieAEs) by hyperactivation of Tfh, provoking autoimmunity48. High levels of Tfh cells have been recently 
correlated to ieAEs in urothelial bladder cancer patients treated with PD-L149. The role of B cells in ICI therapy 
in urothelial cancer has been sparsely studied, despite their high expression of PD-L150. While a positive correla-
tion between B cells and improved survival was suggested for different cancer types51,52, other studies reported 
B cell content not to be associated with response to anti-PD-1 in melanoma53. Our results indicate that B cell 
infiltration levels are quite heterogeneous among responders. We further observed that expression of TGF-β 
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tended to be lower in responders than non-responders. The TGF-β signature is associated with fibroblasts in cells 
excluded from the tumor parenchyma and has been previously associated with a lack of response and resistance 
to immunotherapy39.

Combining information from WES and RNASeq might help to better discriminate between responders and 
non-responders. In our set of responders, there were three patients with an abnormally low number of mis-
sense mutations. Interestingly, these three patients were also the ones with the highest immune infiltrate based 
on the gene expression analysis, indicating that, at least in these cases, a high number of immune cells was the 
key. However, the interplay between different variables might be quite intricate. The use of machine learning 
approaches to build predictive models could be a promising approach, but this requires a large amount of data, 
and the accuracy of the predictions is still relatively low. In linear regression models, the effects of different vari-
ables are additive, which hampers the identification of different classes of responders. Models capable of detect-
ing the biology underneath the data, and the dependencies between different variables, need to be developed.

Finally, a few important limitations should be mentioned. The pipeline focused on missense SNVs, with-
out taking indels or splice-isoforms into account. Peptides occurring from such mutations are expected to be 
highly immunogenic and they could be contributing in a significant manner in explaining the response to 
immunotherapy54. However, they are much less frequent than missense mutations, and larger cohorts would be 
necessary to investigate their importance. Regarding the peptide-MHC complex analysis, we only considered 
MHC class-I-restricted neoantigens as, up to date, the prediction algorithms for MHC II are less reliable and with 
lower accuracy2, but MHC-II-mediated immune response might also be relevant in ICI response55,56. It is worth 
mentioning that antigen preprocessing steps, such as peptide cleavage, its affinity to TAP protein, or ERAP trim-
ming, are also important to predict neoantigens. To account for peptide processing, we also performed searches 
with MHCflurry 2.0, reaching similar conclusions as those obtained with NetMHCpan 4.02,31,57. Finally, the bulk 
nature of our data (both WES and RNASeq) restricts all of our results to in-silico estimations. Future studies 
using single cell profiling will be needed to confirm our findings related to clonality and cell-type abundances. 
All neoantigen properties were based on predictions, which poses important limitations to the interpretation 
of the results. While performing immune-peptidomics experiments would provide a more realistic view of the 
neoantigen landscape, these experiments are not possible with FFPE samples.

This study presents a comprehensive and systematic analysis of a set of different biomarkers and their role 
as predictive biomarkers of response to ICI treatment in advanced urothelial cancer patients. We provide evi-
dence that clonal TMB is a stronger predictor of response to ICI than total TMB. The results also suggest that, 
in some cases, patients with low TMB can respond to the treatment; this is generally associated with high levels 
of immune markers. Our study provides new data supporting that more homogeneous cancers in terms of TMB 
might be more likely to respond to ICI, and suggest that non-additive effects of different variables should be 
considered in future efforts to develop predictive models. Building predictive models able to combine different 
possible responder profiles might help address some of the present challenges for the management of advanced 
urothelial cancer with ICI.

Material and methods
Patient data.  The data analyzed here was derived from biological samples of 27 metastatic urothelial cancer 
patients (4 female and 23 male patients) treated in Hospital del Mar with anti-PD-1/PD-L1 ICIs. This study 
was approved by the Institutional Review Board of Hospital del Mar. For 27 patients, whole exome data was 
obtained from tumors and blood samples Patients were classified as having clinical benefit (R—responders) if 
they had a partial or complete response in tumor burden, or having no clinical benefit (NR—non-responders) 
if they had progressive disease as the best response to treatment. Radiologic responses or progressive disease 
were defined as per the Response Evaluation Criteria In Solid Tumors (RECIST) criteria 1.1. Of the 27 patients, 
17 were responders to the ICI treatment with 5 being complete responders. DNA and RNA extraction from 
formalin-fixed paraffin-embedded (FFPE) tumor specimens and blood samples was performed according to 
our experience58,59. Whole exome sequencing (WES) and RNA-sequencing (RNASeq) were done by the Centro 
Nacional de Análisis Genómico, Barcelona (CNAG). Sample coverage was analyzed by qualimap (Version 2.2.1) 
with default parameters and copy number analysis was conducted using ControlFreeC (Version 5.6) using the 
BAF options.

Variant calling.  The preprocessing of the raw sequencing data was conducted at CNAG following the best 
practice GATK4 pipeline (version 4.0.8). Sequence reads were mapped to the reference genome (hs37d5) using 
BWA (version 0.7.17) to obtain SAM/BAM files sorted by coordinates. To mitigate biases introduced by data 
generation steps such as PCR amplification, duplicates were marked, and base quality scores were re-calibrated, 
as variant calling algorithms rely heavily on the quality scores assigned to the individual base calls in each 
sequencing read. Mutect2 (version 40.1.2) and Strelka2 (version 2.9.10) were used as variant callers comparing 
somatic and germline samples for each patient. Mutations were annotated using VEP (Version 104). SNVs that 
pass the default filters of both, Mutect2 and Strelka2, were further filtered for population-wide allele frequency 
under 5% (gnomAD), a minimum sample depth of 30, and a minimum alternative allele depth of 3. Further 
analyses were performed focusing on missense mutations to facilitate the comparison of mutated and non-
mutated peptides. TMB was measured using the function tmb() of the maftools R-package (version 2.10.0)22, 
estimating the number of non-synonymous mutations per capture size of 50 megabases as this is the target 
region of the kit used. The TMB threshold model was built by applying different thresholds in steps of 1 to 
the dataset, separating the patients into responders (TMB above threshold) and non-responders (TMB below 
threshold). From there, the number of correctly and misclassified patients was used to obtain specificity (True 
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positive rate = true positives/(true positives + false negatives) and sensitivity (1 − True negative rate = 1 − (true 
negatives/(true negatives + false positives)) for each threshold.

APOBEC enrichment estimation.  To assess the apolipoprotein B mRNA editing catalytic polypeptide-
like (APOBEC) mutational signature enrichment, the trinucleotideMatrix function of the maftools R-package 
was used22. The function compares the enrichment of C>T mutations occurring in TCW motives over the total 
of C>T mutations in the given sample to a background of occurring cytosines and TCW motives. Samples with 
an enrichment score > 2 and p value < 0.05 were considered significant.

Clonality.  Clonality was defined as mutations with a cancer cell fraction (CCF) above 0.9 and it is calculated 
as: 

c = copy number, p = purity.
Sample-specific tumor purity and copy number are included to adjust for the variable tumor content and copy 

number changes following Tarabichi et al.60. Clonal mutations were therefore defined as SNVs with a CCF > 0.9. 
Tumor purity and local allele-specific copy number were computed using ASCAT (version 3.0). We used default 
parameters to run ASCAT, except for gamma = 1 as recommended by the developers for WES data61. The input 
for ASCAT was generated using alleleCount (version 4.3.0). The loci file to obtain allele-specific copy numbers 
was downloaded from the nf-core/sarek pipeline (release 3.1.1)62. We excluded all loci not covered by the exome 
target regions from the loci file by building the intersect of loci and BED file that was used for the WES data.

Neoantigen and HLA prediction.  For each patient, the according 4-digits HLA genotype was deter-
mined following the nf-core/hlatyping pipeline (release 1.2.0)63 using the HLA genotyping algorithm OptiType 
(version 1.3.5)32. We used blood samples to type each patient’s HLA alleles running OptiType at default parame-
ters. Secondly, we computed all possible 9-mer peptides that encompass a mutation, as well as their non-mutated 
counterpart. This was done using an in-house python script with a sliding window. The peptide sequences were 
downloaded from Ensembl GRCh37, release 75.

Binding affinity.  To predict the binding affinity of tumor and germline peptides to MHC-I molecules, Net-
MHCpan (version 4.0) and MHCflurry (version 2.0.4) were used31,57,64. By default, NetMHCpan 4.0 labels pep-
tides with a binding rank under 2% as weak binder (WB) and under 0.5% as a strong binder (SB), as defined by 
the program. The rest of the peptides were predicted to have no binders. We additionally applied a threshold 
using the predicted concentration that inhibits 50% binding of the fluorescein-labelled reference peptide (IC50). 
Peptides with a binding affinity IC50 < 500 nM were labelled to be weak binding and peptides with IC50 < 50 nM 
being strong binding.

By comparing the classification of the mutated peptides and their non-mutated counterparts, we identified 
cases in which the mutation was predicted to cause a peptide to become a new binder and cases in which the 
opposite happened (no binder to WB, and WB to no binder, respectively). We compared the frequency of all 
possible amino acid replacements in these peptides to those occurring in peptides for which no change in bind-
ing status was predicted (WB to WB, or no binder to binder). The latter provided an expectation against which 
to compare the observations. This allowed to identify which amino acids were most strongly associated with 
the gain of new binders or the loss of existing binders. We performed similar analyses in relation to the peptide 
position in which the change was observed.

Binding stability.  Binding stability was predicted using netMHCstabpan (version 1.0)34. The applied 
threshold for long binders was 1.4 h following the approach of Wells et al.65.

Agretopicity.  To rank the mutated peptides by improved MHC-I binding affinity compared to their wildtype 
counterparts, we calculated the differential agretopicity index (DAI) as described by Duan et al.35 and used in 
previous studies18,66. Following the approach of Rech et al.44, a threshold was applied at DAI > 9 for neoantigens 
with high differential binding affinity compared to their non-mutated counterparts. The threshold for peptides 
with high DAI was set to 9 as this included only mutated peptides with a binding affinity of more than > 50 nM.

Gene expression analysis.  For 22 of the 27 patients, RNASeq data was generated. Raw sequencing reads 
were mapped with STAR (version 2.6.0)67. Gencode (release 29) based on the GRCh38.p13 reference genome 
and the corresponding gene transfer format (GTF) file was used. The table of counts was obtained with Feature-
Counts function in the package subread (version 1.6.4)68 with the previously mentioned GTF file. Genes having 
less than 10 counts in at least 7 samples were excluded from the analysis. Raw library size differences between 
samples were treated with the weighted “trimmed mean method” TMM69 implemented in the edgeR package 
(version 3.36.0)70. The normalized log2CPMs were used in order to make hierarchical clustering and PCA to 
assess batch effects and outliers. One sample (R16) was removed from further analysis (Figure S12). For the dif-
ferential expression (DE) analysis, we used the DGElist object with TMM normalization factors as input for the 
voom approach of the limma package (version 3.50.0), which models the mean–variance relationship of the log-
counts with precision weights. The results of the DE analysis are presented as volcano plots in the supplementary 
figure S13. We assessed the incursion of surrogate variables and covariates but deemed it unnecessary since the 
results did not improve. Pre-Ranked Gene Set Enrichment Analysis (GSEA)71 implemented in clusterProfiler72 

CCF = VAF/p ∗ (2 ∗ (1− p)+ c ∗ p)
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package (version 3.18.0) was used in order to retrieve enriched functional pathways. The ranked list of genes was 
generated using the -log(p.val)*signFC for each gene from the statistics obtained in the DE analysis with limma. 
Functional annotation was obtained based on the enrichment of gene sets belonging to gene set collections in 
Molecular Signatures Database (MSigDB, version 7.5). The complete results are provided in Additional data 
file 3. The association of previously described gene signatures with response was tested using the normalized 
log2CPM with the GSVA package73. TPM values were used for the deconvolution with CIBERSORTx74 method 
with the LM22 gene signature and using B-mode batch correction and absolute mode. The CIBERSORT esti-
mated abundances and the gene signatures scores computed with GSVA are detailed in Additional File 2 and 3, 
respectively.

Application of clonality threshold to an independent dataset.  As an independent dataset, we ana-
lyzed the publicly available mutations of 26 urothelial cancer patients treated with atezolizumab (an anti-PD-L1 
antibody) previously published by Snyder et al.8. The downloaded somatic mutations were reannotated using 
VEP (Version 104). Due to the low number of mutations called by Strelka2 (average of 25 mutations/patient, 
range 11–62) it was not possible to build the intersect of the two callers, Strelka2 and Mutect2, as it was done for 
the dataset of Hospital del Mar. Instead, the union was built of both lists, following the method described by Sny-
der et al. Mutations were then filtered as described above (gnomAD < 5%, sample depth > 30X, alternative allele 
depth > 3X). Following Snyder et al., patient 4072 was excluded due to low coverage. Clinical treatment response 
was evaluated as described above. No information on tumor sample purity and cell fraction were available. Thus, 
the effect of clonality was estimated by applying different thresholds of minimum tumor variant allele frequency 
(VAF) from 0.1 to 0.7. Above 0.7, only one responding patient was found to have mutations passing the thresh-
old. The TMB ratio was calculated as TMB in responders divided by TMB in non-responders. To compare these 
results, the same calculation was repeated for the Hospital del Mar dataset.

Statistical tests and graphs.  All plots included in this manuscript were generated using R (version 4.1.2) 
and RStudio (version 1.4.1106). For data integration we also used scripts written in python (version 3.5.2). Wil-
coxon signed-rank test was used to obtain the significant differences between treatment response groups.

Ethical approval.  The presented study was approved by the institutional Ethics Committee for Clinical 
Investigation of the Hospital del Mar-IMIM, Barcelona, Spain (2016/6767/l) and conducted in accordance with 
the principles set out in the World Medical Association guidelines (Seventh revision of the 249 Declaration of 
Helsinki, Fortaleza, Brazil, 2013) for human subjects involved in medical investigations. All patients signed 
informed consent for the analysis of tumor biopsies for research purposes and biomarker assessment.

Data availability
The dataset generated and analyzed during the current study is available in the EGA repository under the study 
ID EGAS00001007086.
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Predicting immunotherapy response of
advanced bladder cancer through a meta-
analysis of six independent cohorts

Lilian Marie Boll 1,5, Sergio Vázquez Montes de Oca 1,5, Marta E. Camarena 1,
Robert Castelo 2, Joaquim Bellmunt 1,3 , Júlia Perera-Bel 1 &
M. Mar Albà 1,4

Advanced bladder cancer patients show very variable responses to immune
checkpoint inhibitors (ICIs) and effective strategies topredict response are still
lacking. Here we integrate mutation and gene expression data from 707
advanced bladder cancer patients treated with anti-PD-1/anti-PD-L1 to build
highly accurate predictive models. We find that, in addition to tumor muta-
tional burden (TMB), enrichment in the APOBECmutational signature, and the
abundance of pro-inflammatory macrophages, are major factors associated
with the response. Paradoxically, patients with high immune infiltration do not
show an overall better response. We show that this can be explained by the
activation of immune suppressive mechanisms in a large portion of these
patients. In the case of non-immune-infiltrated cancer subtypes, we uncover
specific variables likely to be involved in the response. Our findings provide
information for advancing precision medicine in patients with advanced
bladder cancer treated with immunotherapy.

Immune checkpoint inhibitors (ICI) have been amajor breakthrough in
the treatment of advanced bladder cancer1,2. ICI can result in partial or
even complete remission of the tumor, but it is only effective in a
subset of the patients. Understanding which are the factors that
underlie the response to ICI is key to improve our ability to predict
response and to develop better therapeutic instruments3,4. While the
number of somatic mutations in the tumor, or tumor mutational
burden (TMB), is positively associated with ICI response, TMB alone
has a moderate predictive power5,6. Another biomarker with conflict-
ing results is the expressionof theprogrammedcell death-ligand 1 (PD-
L1) together with its receptor, programmed cell death protein (PD-1),
targeted by ICI drugs1,2,7,8. Immune players that have been associated
with the response include the abundance of CD8+ T cells, positively
associatedwith the response in inflamed tumors, and the transforming
growth factor β (TGF-β) signaling in fibroblasts, with a negative effect
on the response to ICI9.

Bladder cancer (BLCA) shows a high degree of heterogeneity, and
five muscle-invasive subtypes have been defined in the TCGA urothe-
lial bladder carcinoma cohort10–12. The basal-squamous subtype is
characterized by high expression of basal and stem-like markers, as
well as immunemarkers. The luminal-papillary subtype corresponds to
tumors with papillary morphology and enriched in FGFR3 mutations.
The luminal-infiltrated subtype shows low tumor purity and muscle-
related signatures, and corresponds to the stroma-rich subtype in
other classifiers11. The luminal subtype is associated with high levels of
uroplakins UPK1A and UPK2. Finally, the neuronal class is associated
with high levels of neuronal differentiation and development genes.
Whether these different subtypes show a similar or different response
rate to immunotherapy is a matter of debate. The luminal-infiltrated
and basal-squamous subtypes have a high proportion of infiltrated
immune cells and this has been hypothesized to result in more effec-
tive responses to ICI10,13. However, the results of a recent clinical trial
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have suggested that neuronal is the only subtype associated with a
higher response14.

Increasing our ability to predict the response to ICI is key to
providing better treatments to patients. This can be achieved by
building computational predictive models capable of integrating dis-
parate sources of omics data15–17. For these models to be robust, it is
fundamental to gather data from a large number of patients. In order
to address this challenge, we have assembled data from 707 tumors
from sixdifferent cohorts of advancedBLCApatients treatedwith anti-
PD-1/PD-L1. The models we have developed show high predictive
accuracy and at the same time provide insights into the determinants
of ICI response in the different subtypes.

Results
Building an advanced BLA meta-cohort
We extracted clinical and omics data for a total of 707 advanced BLCA
patients treated with anti-PD-L1/PD-1 (Fig. 1). The patients were diag-
nosed with metastatic or locally advanced BLCA. Paired tumor-
germline whole-exome sequencing (WES) data and tumor RNA
sequencing (RNA-Seq) data were available for IMvigor2109, HdM-
BLCA-118, and SNY-20175. For MIAO-20183, WES data was collected. For
the cohorts UC-GENOME19 and UNC-10816, tumor RNA-Seq data,
together with targeted DNA sequencing for a subset of patients, was
available. To allow for a meaningful comparison of ICI therapy
responders and non-responders, we considered the RECIST status of
complete response (CR) and partial response (PR) as responders (class
R) and PD (progressive disease) as non-responders (class NR). Stable
disease (SD) and NE (not evaluable) were not considered for further
analyses. We obtained a total of 466 patients classified as R or NR (163
and 303, respectively). For themajority of these patients (N = 348, 75%)
both mutation and tumor gene expression data was available.

Investigation of clinical and demographic variables indicated that
having a low functional status (ECOG score ≥ 1) and presence of liver
metastasis were significantly associatedwith lackof response to ICI (χ2-
test p value = 0.006 and p value = 0.001, respectively). Other char-
acteristics such as sex, age, or smoker status were not significantly
associated with the response (Supplmentary Table 1).

Analysis of mutational landscape
We obtained a high-resolution map of the most common somatic
mutations in 121 previously defined BLCA-associated genes (Fig. 1,
Supplementary Table 2). TP53 was the most frequently mutated with
132 mutations followed by KMT2D (112 muts), ARID1A (78 muts), ELF3
(67 muts), KDM6A (56 muts), and FGFR3 (55 muts). These genes have
also been found tobe frequentlymutated inBLCA tumors fromTCGA10

and other cancer cohorts20.
We tested if therewas any association betweenmutations in these

genes and the response to the treatment. Although mutations in the
FGFR3 are a hallmark for reduced immune infiltration10,11, we observed
no relationship between FGFR3 alterations and response to ICI,
strengthening the conclusions of a previous report that was based on
103 patients, 17 of which had FGFR3 alterations19. The only gene that
was significantly associated with response was ARHGEF12 (mutated in
11 responders and 1 non-responder, adjusted p value = 0.015). This
gene encodes a Rho GTPase and its deletion has been associated with
neuroblastoma differentiation and decreased stemness-related gene
expression21.

Missense and non-stop mutations are significantly associated
with the response to ICI
We measured the tumor mutational burden (TMB), which is the
number of non-synonymous mutations generated in the tumor, using
WES data. For patients of the UNC-108 and UC-GENOME cohorts, we
used the provided TMB values, which were derived from panel DNA
data. To integrate the results of the different cohorts we transformed

the original TMB values to Z scores, separately for each cohort, and
then combined the Z scores of the different cohorts (N = 378).

We found that responders had significantly higher TMB than non-
responders (Fig. 2A, B), consistent with previous findings3,9,15,22. While
both subclonal and clonalmutations were significantly associatedwith
the response (Fig. 2C), the first ones had a larger effect size. The odds
ratio obtained from a logistic regression was higher for subclonal TMB
(OR = 1.55, 95% CI [1.30; 1.92]) than for clonal TMB (OR = 1.24; 95% CI
[1.10; 1.42]). This is in contrast to previous findings based on one of the
cohorts, HdM-BLCA-118, in which clonal mutations were shown to have
a larger influence on the response. We also observed a significant
enrichment of APOBEC-induced mutations in the responder group
(Fig. 2D); this variable was moderately correlated with TMB (r =0.47,
Fig. 2E). The twoAPOBEC signatures SBS2 and SBS13were significantly
associated with the response, but the first one had a stronger effect
(linear regression values B = 5.40 and p value = 0.0048) than the sec-
ond one (B = 1.91 and p value = 0.0107).

Missense mutations were significantly associated with response
(Fig. 2F, SupplmentaryTable 3), independentlyof thepredicted impact
of the mutation on protein function (Supplementary Fig. 1). We found
that non-stop mutations (single nucleotide variants that cause a stop
codon loss) were significantly associated with response, but this was
not the case for frameshift or in-frame insertions and deletions
(INDELs). We also predicted neoantigens derived from missense
mutations using the NetMHCpan software23. As previously described
for different cancer types6,18,24, we found that the number of predicted
neoantigens derived from missense mutations was significantly asso-
ciated with response. Finally, we constructed peptides resulting from
frameshift INDELs and the protein extensions generated by nonstop
mutations. For thesemutations we found no difference in the number
of putative neoantigens between responders and non-responders
(Supplementary Fig. 1).

Somatic copy number alterations are common events in tumor
cells of BLCA patients10. Previous studies have suggested a positive
relation between focal amplification of cyclin D1 (CCND1) and ICI
response15 and a negative association between genomic alterations in
CDKN2B and CDKN2A and overall survival in BLCA patients25,26. While
we found CDKN2A/CDKN2B to be the most common deletion in our
data (16 responders and 30non-responders), and every secondpatient
to have an amplification in the CCND1 gene region (51.30%, 75 non-
responders and 43 responders), none of the copy number alterations
were found to be significantly associated to ICI response (Chi-square
test p value > 0.05).

Gene expression biomarkers associated with ICI response
We used the RNA-Seq data to compute individual gene expression
values, immune cell composition in the tumor sample with the
CIBERSORTx algorithm27, and previously defined gene signatures. As
expected, immune invasion and activation biomarkers were con-
sistently more elevated in responders than in non-responders. This
included chemokines such as CXCL9, CXCL10, CXCL11, and CXCL13,
the interferon-γ and granzyme A and B, and CD8A (Fig. 3A and Sup-
plementary Fig. 1). We observed significantly higher expression of the
immune checkpoints PD-1 and PD-L1 in responders than in non-
responders (Fig. 3B). While high expression of these genes is generally
associated with poorer prognosis in cancer, they have also been sug-
gested as biomarkers of ICI response28–31.

The abundance of CD8+ T cells, memory-activated CD4+ T cells
and pro-inflammatory macrophages M1 was significantly higher in
responders than in non-responders (Fig. 3C). Three out of four gene
expression signatures related to CD8+ T cell activation were sig-
nificantly associated with response: CD8 T-effector from Mariathasan
et al.9 for bladder cancer, CD8 T-effector from McDermott et al.32 for
kidney cancer and CD8 T-effector from POPLAR for lung cancer33

(Fig. 3D). CD8 T-effector from Bindea et al.34 for colorectal cancer did
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Fig. 1 | Overview of the analyzed sequencing data of six metastatic bladder
cancerdatasets.ANumber of patients with different types of data. Sequencing
data of 707 patients was downloaded. Patients with a RECIST classification of
partial or complete response to anti-PD-L1/PD-1 were considered responders
(R) and progressive disease were considered non-responders (NR). Stable
disease and non-evaluable were not included for further analysis. B Of 466
patients with response to immunotherapy information, 348 patients have
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genes mutated in ≥5% of the samples over all four datasets with WES data
(N = 318 patients). The X axis represents the patients from the different
cohorts, the corresponding TMB is indicated. Mutations are classified in dif-
ferent types as indicated; multi hit describes cases where the gene carries
more than one mutation in the patient. R responders, NR non-responders, Mut
panel DNAmutation panel.
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not achieve statistical significance. Similarly to the gene expression of
IFNG, responder samples were significantly enriched in both sig-
natures of the IFN-γ pathway by Ayers et al.35 and Cristescu et al.36. The
recently published gene signature VIGex, which combines different
genes involved in immune response37, and Neut-IFN-15, relating IFN-γ
stimulated neutrophil to improved response to ICI38, were also

significantly associated with response (Fig. 3D). We observed higher
scores for the antigen-presenting machinery (APM) gene signature by
Thompson et al.39, as well as for HLA-I, in responders than in non-
responders (Fig. 3E and Supplementary Fig. 2).

We also investigated if tumor-restricted lncRNAs, which might
contain non-canonical ORFs with the potential to generate HLA-bound
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peptides40,41, weremore prevalent in responders than non-responders.
If so, this would support the hypothesis that non-coding sequences
might be a source of immunogenic antigens42. In each cohort, we
generated a gene expression signature based on tumor-specific
lncRNAs containing open reading frames with cancer-derived immu-
nopeptidomics evidence (Supplementary Fig. 3). We found that, when
the signatures from different datasets were combined together,
responders had significantly higher values of this lncRNA signature
than non-responders (Fig. 3F). When the analysis was performed
separately for each cohort, only IMvigor210 achieved statistical sig-
nificance (Supplementary Fig. 4).

We found significantly lower expression of the immunosuppres-
sive transcription growth factor beta 1 (TGF-β), and of the cyclin gene
CCND1, in responders than in non-responders (Fig. 3A). A biological
pathway supporting tumor progression is the epithelial to mesenchy-
mal transformation in stroma cells (Stroma/EMT)9,43 was also nega-
tively associated with response (Fig. 3D).

Relationship between different signatures
The different immune activation signatures tested were all strongly
positively correlated with each other (Fig. 3G, Supplementary Data 1).
Intriguingly, the immunosuppressive stroma/EMT signature, which
was weakly positively correlated with immune activating signatures,
showed a negative correlation with TMB (r = −0.169, p value = 0.002).
CCND1, more abundant in non-responsive tumors, was positively
correlated with TGF-β (r = 0.177, p value < 0.001). PD-1 and PD-L1
expression levels, as well as HLA-I and HLA-II signatures, showed a
positive correlation with CD8+ and CD4+ activating cells (r = 0.4–0.65,
p value < 0.001). The lncRNA signature showed no correlationwith the
other biomarkers studied. Principal component analysis identified five
major groups of variables that contribute to explain the variability
across tumor samples: 1. Mutation status (TMB/APOBEC), 2. Immune
activation signatures (CD8+ T cells, IFN-γ, etc.), 3. TGF- β/EMT
immuno-suppressor signatures; 4. tumor-specific lncRNAs and, 5.
CCND1 (Supplementary Fig. 5).

The determinants of the response to ICI response depend on the
subtype
The analysis of BLCA samples from the TCGA project identified five
subtypes based on different biomarkers10. We used this well-
established methodology to classify the tumors in our meta-cohort.
The largest group of patients was luminal-infiltrated (52R & 116 NR),
followed by basal-squamous (35R & 78 NR), luminal-papillary (31R & 56
NR) and luminal (11R & 25 NR) (Fig. 4A). Neuronal represents the
smallest subtype (10R & 6 NR). The only subtype with a significantly
better response to treatment than the general trend was neuronal
(62.5% versus 33% of responders, Fisher exact test, p value = 0.014).

We observed that 30% of luminal-papillary tumors were FGFR3-
altered (26 out of 87), followed by 8% for luminal. Basal-squamous and
luminal-infiltrated had high immune cell infiltration, as expected10

(Figs. 4B and 4C, respectively; Supplementary Fig. 6). In addition, we
observed that these two subtypes had higher HLA-I gene expression
(Fig. 4D) and, at least for basal-squamous, higher expression levels of
the antigen presentation pathway (Fig. 4G). They also had high TGF-β
and low TMB values (Fig. 4D–F).

We next analyzed the different variables in the immune-infiltrated
(luminal-infiltrated and basal-squamous) and non-immune-infiltrated
(luminal-papillary, luminal and neuronal) subtypes separately.
Although immune-infiltrated tumors had significantly lower TMB than
non-immune infiltrated ones (Fig. 5A), TMB and APOBEC enrichment
were significantly associated with response (Fig. 5B). The effect of
immune activation and immunosuppression signatures on the
responsewas significant inboth groups, but in generalmoremarked in
the case of the immune-infiltrated subtypes (Fig. 5C, D, Supplementary
Figs. 7 and 8). For the IFN-γ signature, the difference between the
median of the response group and the median of the non-response
group was 0.727 for immune-infiltrated and 0.229 for non-immune-
infiltrated. We observed the same trend for the CIBERSORT score
(0.364 and 0.112, respectively), M1 macrophages (0.099 and 0.037,
respectively) and CD8 T cells (0.07 and 0.026, respectively). For
lncRNAs, the signature was only significant for the immune-infiltrated
group (Fig. 5E).

Because of the high TGF-β expression values detected in the
immune-infiltrated types (Fig. 5C), we decided to investigate in more
detail the relationship between immune activation and immune sup-
pression signatures. We found a relatively large group of patients with
high CD8+ T cell infiltration and also high TGF-β values, these patients
had a lower probability to respond than those with high CD8+ and low
TGF-β values (39.7% versus 52.4% of responders, Fisher exact test
p value = 0.0479, Fig. 5F). When we performed the analysis per sub-
type, the same trend was observed, especially for luminal-infiltrated,
although the results did not achieve statistical significance (Supple-
mentary Fig. 9). These observations can explain why tumors with high
immune infiltration respond less well to the treatment than expected.

Predictive models integrating different omics variables
Based on the above-described findings, we selected a list of repre-
sentative variables to construct predictive models of the response to
ICI. The complete set of variables comprisedmutation-based variables
(TMB, non-stop mutations, APOBEC-enrichment score), gene expres-
sion of selected genes (PD-1, PD-L1, CCND1), immune signatures (IFN-γ,
stroma/EMT, inflamed T cells, TGF-β and antigen-presenting machin-
ery pathways), a signature of tumor-specific lncRNAs, immune cell
abundance (M1 macrophages, CD4 memory activated T cells, CD8
T cells and regulatory T cells), as well as clinical information (ECOG,
liver metastasis).

A random forest model trained with these variables achieved high
accuracy, as indicated by an area under the curve (AUC) of 0.761 (Fig. 6A,
Supplmentary Table 4). In clinical practice, the number of mutations in a
tumor sample is a widely usedmarker for decision-making in the context

Fig. 2 | Relationship between somatic mutations and the response to ICI.
A Responders have a higher tumor mutational burden (Z score TMB) than non-
responders (median Z score TMB R=0.18, NR= −0.45). TMB is calculated as the
number of non-synonymous mutations per 50Mb. The differences were highly
significant (two-sided, two-sample Wilcoxon test, p value = 2.1e-13). B Responders
show ahighermeanTMB thannon-responders. Thisfinding is consistent over all six
datasets, and four of the six datasets display significant differences (two-sided, two-
sample Wilcoxon test). C The difference between treatment response groups
remainswhen separating theTMB intoclonal and subclonal bya cancer cell fraction
(CCF) cutoff of 0.9 (two-sided, two-sample Wilcoxon test). Median clonal TMB R:
2.15 mut/50Mb, NR: 1.1 mut/50Mb; median subclonal TMB R: 1.19 mut/50Mb, NR:
0.8 mut/50Mb. D Responders are significantly enriched in APOBEC-induced
mutations compared to non-responders (two-sided, two-sample Wilcoxon test, p
value = 9e-04; median APOBEC-enrichment score R: 3.45, NR: 2.85). E Spearman

correlation between different DNA-derived variables. F Number of non-
synonymous mutations by type and association of the different mutation types
with response. Missense mutations, nonstop mutations, and putative neoantigens
were found to be significantly associated with the response (two-sided, two-sample
Wilcoxon test). Medians for number of missense mutations R: 202 muts, NR: 88
muts; nonstopmutations R:0muts, NR: 0muts, frameshift insertions/deletions R: 3
muts, NR: 3 muts; in-frame insertions/deletions R: 0 muts, NR: 0 muts; putative
neoantigens R: 22.5 neoantigens, NR: 12 neoantigens. Neoantigens were predicted
from missense mutations applying a threshold of 500 nM IC50 binding affinity in
NetMHCpan 4.0. N = 234 patients. R responders (yellow), NR non-responders
(turquoise), TMB tumor mutational burden, INDELs insertions and deletions. All p
values are indicated in the according plots. Source data are provided as a Source
Data file.
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of ICI therapy44. A random forest model considering only Z score TMB
had an AUC of 0.678. A threshold model in which tumor samples with
more than 10 mutations/Mb were predicted to be from responders and
those with less mutations from non-responders was associated with an
AUC of 0.61 (Supplementary Fig. 10).

Random forest models provide information on the contribution
of each variable to the model (feature importance). The variables with
a clear association with response in the complete model were, in
descending order, TMB, M1 macrophages, APOBEC-enrichment, IFN-γ
signature, CD8+ T cell abundance, PD1 gene expression and HLA-I
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Fig. 3 | Dissecting the effects of different immune-related variables.
A Normalized expression values for selected genes described in the context of
Immune activity or suppression. All comparisons were significant after multiple
testing adjustment, except for the genes TGFB1 and CCND1 (two-sided, two-sample
Wilcoxon test). B Expression of the immune checkpoint molecules PD-L1 (gene
CD274) and PD-1 (gene PDCD1) is significantly higher in responders (two-sided, two-
sample Wilcoxon test). C Deconvolution analysis using CIBERSORT shows higher
immune cell abundance in responders (two-sided, two-sampleWilcoxon test).D Six
signatures of tumor antigen presentation and immune response are enriched
among responders, while immune suppression signature scores are higher in non-
responders. All comparisons were significant after multiple testing adjustment,

except T cells inflamed and Stroma/EMT (two-sided, two-sample Wilcoxon test).
EGene signatures combining the expression of HLA-I and HLA-II types are higher in
responders than in non-responders (two-sided, two-sample Wilcoxon test).
F Responders show higher expression of a signature related to tumor-specific long
non-coding RNAs (lncRNA) than non-responders (two-sided, two-sample Wilcoxon
test).GCorrelationmatrix including TMB and RNA-Seq variables. P values obtained
by two-sided, two-sample Wilcoxon test. N = 420 patients. R responders (yellow),
NR non-responders (turquoise), APM antigen-presenting machinery, lncRNA long
non-coding RNA. All p values are indicated in the according plots. Source data are
provided as a Source Data file.
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signature (feature importance > 0.03, Fig. 6B). Those associated with
lack of response were, also in descending order, CCND1 gene expres-
sion, Stroma/EMT signature and TGF-β gene signature.

As a validation cohort, we tested the model on data from the
JAVELIN Bladder 100 trial45, which includes advanced urothelial cancer
patients treated with avelumab (anti-PD-L1). While no raw data was
available, we were provided with processed data. With this data, we
tested the model based TMB+RNA using data from 123 patients from

the JAVELIN Bladder 100 trial (27 responders, 96 non-responders). The
model achieved an AUC of 0.764 in the validation run, surpassing the
averaged AUC of 0.747 obtained from 1000 seeds in the train/test
phase (Fig. 6C). This result underscores the robustness of our model,
highlighting its potential in predicting outcomes for patients treated
with immune checkpoint inhibitors.

We then built models separately for the immune-infiltrated and
the non-immune-infiltrated classes. Maximum accuracy was achieved
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Fig. 4 | TheTCGA-subtypes luminal andneuronal havehigherTMB,whilebasal-
squamous and luminal-infiltrated show higher immune activity. A Proportion
of responders (yellow) and non-responders (turquoise) in each of the five TCGA
subtypes. TMB was weakly correlated with the immune activation signatures. The
neuronal subtype is the only one with a significant excess of responders over non-
responders (two-sided Fisher’s exact test, p value = 0.014, indicatedwith *).B Basal-
squamous and luminal-infiltrated have high values of immune cell abundance
(absolute score obtained from CIBERSORT), while luminal, luminal-papillary and
neuronal show low immune invasion. Immune cell abundance of CD4 T cells is
similarly high in basal-squamous and luminal-infiltrated subtypes (CIBERSORT).
Luminal-infiltrated shows the highest mean of CD4 memory resting T cells
(CIBERSORT) (Kruskal–Wallis test). C Basal-squamous and luminal-infiltrated have

the highest expression of immune biomarkers, both immune activating and sup-
pressivemarkers (Kruskal–Wallis test). D. HLA expression is also highest in luminal-
infiltrated andbasal-squamous (Kruskal–Wallis test).ETMB is highest in the luminal
and neuronal subtypes (Kruskal–Wallis test). F The tumor-infiltrated subtypes
basal-squamous and luminal-infiltrated show the highest values of TGF-β gene
expression (Kruskal–Wallis test). G Basal-squamous is enriched in antigen-
presenting machinery (APM) compared to other subtypes (Kruskal–Wallis test).
N = 420 patients. Ba/Sq: Basal-squamous (yellow), LumInf Luminal-infiltrated
(orange), LumP Luminal-papillary (green), Lum Luminal (dark blue), NE Neuronal
(light blue). All p values are indicated in the according plots. Source data are pro-
vided as a Source Data file.
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Fig. 5 | Influence of different biomarkers in the immune-infiltrated and non-
immune-infiltrated subtypes. A Overall, TMB is higher in the non-immune infil-
trated group. In both groups, responders have significantly higher TMB (two-sided,
two-sample Wilcoxon test). B In both groups, responders have higher enrichment
scores of the APOBECmutational signature (two-sided, two-sampleWilcoxon test).
C Responders have higher IFN-γ expression values, and lower TGF-β expression
values than non-responders for both subgroups (two-sided, two-sample Wilcoxon
test). D CIBERSORT score is higher in responders of the infiltrated groups, but not
the non-infiltrated group. Differences between responders and non-responders are
significant for CD8+ T cells andmacrophagesM1 (two-sided, two-sampleWilcoxon

test). E Only in the infiltrated group, responders have higher expression of the
lncRNA signature. No difference was observed between response groups in the
non-immune-infiltrative group (two-sided, two-sample Wilcoxon test).
F Relationship between CD8 T cell and TGF-β gene expression. Immune-infiltrated
samples tend to have high CD8+ T cell abundance, and in many cases also high
levels of the TGF-β signature. The dashed line marks the optimal cutoff for each
gene signature obtained by ROC (TGF-β: 0.0163; CD8 t effector cells: 0.246),
responder are marked with circles, non-responder with filled circles. N = 420
patients. R: responders, NR: non-responders. All p values are indicated in the
according plots. Source data are provided as a Source Data file.
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in the immune-infiltrated group using all the variables (Fig. 6D,
AUC =0.793). The IFN-γ signature, as well as CD8 gene expression,
gainedweight in thismodelwith respect to themodel developed for all
patients (Supplementary Fig. 11). CCND1 abundance was the most
negative factor, followedbyTGF-β levels. In contrast, the non-immune-
infiltrated model showed relatively low accuracy (Fig. 6E,
AUC =0.649). Themodel basedonRNA-Seqdata plus TMBhadanAUC
of 0.769 for immune-infiltrated (N = 229) and 0.647 for non-immune-
infiltrated (N = 119), similar to the complete model.

The robustness of the model was further tested by removing one
dataset at a time. For this, we employed the model constructed with
TMBandRNA-Seqdata, as it includedmorepatients than the complete
model (348 versus 205) and showed almost the same accuracy (AUC
0.747 versus AUC 0.761, Fig. 6A). Removing individual datasets resul-
ted in models of similar accuracy (Fig. 6F), indicating that the model
does not suffer from over-fitting. The fact that the number of non-
responders was approximately double than the number of responders
did not seem to have a significant effect either (Supplementary Fig. 12).

To gain further insights into the drivers of the response to ICI in
the non-immune-infiltrated samples, we derived subtype-specific
decision trees and inspected the distribution of the variables across
patients (Supplementary Figs. 13 and 14). In the case of luminal-papil-
lary, the largest group, we also built a random forest model (N = 71;
Supplmentary Table 5). This model identified PD-1 Z score as the third
most important feature following macrophages M1 and TMB. The
decision tree also indicated that high PD-1 expression was strongly
associated with response, with 11 out of 14 patients with PD-1 z-
score > −0.41 being responders. Among the remaining 15 responders,
13 had very low values of the stroma/EMT gene signature (stroma/
EMT< −0.527). Therefore, a large part of the responders, 24 out of 26,
were characterized by either high PD-1 values or low stroma/EMT.

In the case of luminal, the decision tree that we obtained
revealed an association between absence of Regulatory T cells (Treg)
and response to ICI. The percentage of responders with Treg values
above 0.003 was only 9% (1 out of 11), whereas it was 58% for non-
responders (14 out of 24)(p value = 0.0095). Regulatory T cells are a

Fig. 6 | Predictivemodels of the response to immunotherapy. A ROC curves for
the complete model, TMB and TMB + RNA (TMB and RNA-seq derived vari-
ables), with AUC and number of samples (N). FPR: false positive rate; TPR:
true positive rate. The average of 1000 runs is shown. B Feature positively or
negatively associated with response. The length of the bar represents feature
importance from random forest. Color reflects association with response
taken from the previous manuscript sections (green: positively associated,

red: negatively associated). C ROC curve for testing the TMB + RNA model in
the validation cohort JAVELIN Bladder 100 trial. AUC and N values are indi-
cated. D ROC curve of the complete model and TMB + RNA for the subset
immune-infiltrated tumors, with AUC and N values. E ROC curve of the
complete model and TMB + RNA for the subset of non-immune-infiltrated
tumors, with AUC and N values. F ROC curves for TMB + RNA model when
removing one of the cohorts at a time.
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subset of CD4+ T cells with immunosuppressive effects46. This effect
was only observed in the luminal subtype (Supplementary Fig. 14).

In the neuronal subtype, the lack of response was invariably
associated with low AMP signature values (AMP Z score < −0.36 in all
non-responders, see also Supplementary Fig. 8). So, the inability to
present antigens at sufficiently high levels seems to be a strong
determinant for the treatment to fail in this group of patients.

Discussion
We have compiled the largest clinical, mutation and gene expression
dataset from patients with advanced BLCA treated with ICI. Reanalysis
of previously associated signatures has confirmed that tumor muta-
tional burden (TMB) and APOBEC-induced mutations are consistently
associated with the response3,15,18,47,48. Frameshifts mutations, reported
to be significant in melanoma49, were not found to be significant here.
Analysis of RNA sequencing data has confirmed that immune activa-
tion biomarkers were significantly associated with response to ICI, as
previously reported for different cancer types15,35,36. Macrophage M1
and CD8+ T cell levels were higher in responders than in non-respon-
ders, even in those cancer subtypes with relatively little immune
infiltration. Two factors that negatively affected the response were
TGF-β/stroma/EMT and CCND1 gene expression levels. It has been
proposed that TGB-β negatively affects the response to ICI by blocking
T cell penetration in the tumor9. In the case of CCND1, a previous
association had been found between CCND1 amplification and lack of
response15. The inhibition of the protein complex cyclin D1/CDK4
results in higher PD-L1 levels, linking the kinase activity modulated by
CCND1 with cancer immune surveillance50. Our results indicated that,
at least in bladder cancer, measuring CCND1 gene expression could
have a stronger prognostic value than measuring copy number.

We found several unexplored biomarkers of the response to ICI.
The first one was the number of non-stop mutations, which was posi-
tively associated with response. Although non-stopmutations are only
present in about 21% of the tumors, the large number of patients
analyzed here allowed us to draw this association. Non-stopmutations
can extend the coding sequence and, as a result, “foreign” antigens
might be formed. Another signature was linked to the tumor-specific
activation of lncRNAs, which are an alternative source of tumor-
specific antigens42,51. Mutations in the gene ARHGEF12 were also sig-
nificantly associated with response. This gene encodes a yet poorly
characterized Rho GTPase. Interestingly, a study comparing pre- and
posttreatment samples of two cancer patients treated with anti-PD-1
reported that tumor clones with ARHGEF12 mutations were only
detected in pretreatment samples52. This could imply that anti-PD-1
treatment was effective in eliminating cells containing mutated
ARHGEF12.

Previousmodels of the response to immunotherapy includeddata
from different types of cancer15,17,53,54 or focused on specific BLCA
cohorts16. The size of our study allowed us to investigate the deter-
minants of the response to ICI indifferent BLCA subtypes. Surprisingly,
we found that the two subtypes with the highest immune infiltration -
basal-squamous and luminal-infiltrated - did not show an overall better
response than the other subtypes. This is likely to be relevant for trials
that select treatment on the basis of cancer subtype55. We discovered
that the immune-infiltrated subtypes tend to have lower TMB values,
as well as higher immunosuppressive signatures, than other subtypes,
and these factors decrease the likelihood of responding. For immune-
infiltrated subtypes we achieved high accuracy in response prediction
models that included RNA-Seq data in addition to TMB. This
encourages the use of expression biomarkers, such as signatures of
macrophages M1, CD8+ T cells and TGF-β, in predicting the outcome
of the treatment for these cases. For non-immune-infiltrated subtypes,
other biomarkers appeared to be particularly relevant. PD-1 expression
levels were strongly associated with response in the case of luminal-
papillary and basal-squamous, but were of little relevance in the other

subtypes. The potential inhibitory effect of Treg cells was consistent
with the larger number of these cells in the tumors of non-responders
versus non-responders, in the case of the luminary subtype.

Anti-PD-(L)1 therapydepends on the expression of PD-1 and PD-L1,
which can be quantified using immunocytochemistry prior to
treatment2,56. The expression of these genes was significantly asso-
ciated with response. However, it was also more elevated in the
immune-infiltrated tumors than in the non-immune-infiltrated tumors,
independently of the response. This illustrates how taking into account
the specific tumor subtype, or the degree of immune inflammation of
the tumor, might be key for a correct interpretation of these bio-
markers in a clinical setting.

Although a large number of variables were considered here, there
may be yet unknown factors that also have an influence in the response.
Theneuronal subtype showeda strikingly high response rate. It has been
hypothesized that this kind of tumor could be more responsive to ICI
due to the expression of tissue-restricted neuronal or neuro-endocrine
proteins, together with low TGF-β gene expression values14. The present
study, which included a larger number of patients, confirmed that TFG-β
levels are particularly low in this class. As already mentioned, the non-
responders (6 out of 16) were all characterized by low values of the
antigen-presentationmachinery. This reinforces the fundamental role of
tumor-specific antigens, of mutation origin or otherwise, in mediating
the response to the treatment.

Using part of the data for validation we obtained an AUC estimate
of 0.761 for the model that used the complete set of variables (0.793
for the immune-infiltrated subtypes) and 0.747 for the RNA+ TMB
model (gene expression variables and TMB). This represented an
improvement over using TMB alone (0.678). When we tested the
RNA+ TMB model against the JAVELIN Bladder 100 trial we obtained
an AUC of 0.764. These predictive values are in the range of those
obtained by a previously obtained model that combined data from
different types of cancer15; theAUCvalueswere between0.66 and0.86
depending on the test dataset. The elastic net logistic regression
model by Damrauer et al.16, built on the bladder cancer IMvigor210
dataset, showed an AUC of 0.84 when tested on the validation portion
of the same dataset, 0.82 when tested on UNC-108 and 0.65 when
tested on UC-GENOME.

In this study we integrated disparate cohorts of bladder cancer
patients, and this poses a number of challenges. In order to control for
sequencing batch effects we transformed the data to normalized
Z scores, which allowed us to merge datasets. Not all the datasets
included the same set of variables, therefore, the complete model did
not include all patients with ICI response information. We tested the
effect of leaving out one cohort of a time, or employing a similar
number of non-responders than responders. External cohort valida-
tion using the independent JAVELIN Bladder 100 cohort demonstrated
the robustness of our model. In this specific cohort the patients had
been treated with chemotherapy prior to immunotherapy, but this
does not seem to impact the results. Testing the model in cohorts
treated with anti-PD-(L)1 in combination with other drugs (e.g. Enfor-
tumab vedotin) can be foreseen.

In conclusion, we have combined six datasets to build the largest
bladder cancer-specific meta-cohort of ICI therapy, and conducted a
comprehensive multi-omics analysis. The results have uncovered
unexplored ICI associated variables and have shed light on the com-
plex interplay between tumor biology, the immunemicroenvironment
and treatment response. Our study underlines the importance of
subtype-specific factors for more personalized treatment strategies
and enhanced patient outcomes in the era of immunotherapy.

Methods
Omics datasets
We accessed tumor RNA-Seq, paired tumor-germline WES and tar-
getedDNAsequencing fromsix advancedormetastaticbladder cancer
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cohorts. Ethical approval to use the data for research was obtained by
the original institutions who published the original data used in this
study. All patients received anti-PD-1/PD-L1 treatment. Germline WES
was conducted onwhole blood samples, tumorWES andRNA-Seq data
obtained from FFPE samples coming from primary or metastatic can-
cer tissue.

1. IMvigor210, N = 348, Mariathasan et al.9

EGA study ID EGAS00001002556 [https://ega-archive.org/
studies/EGAS00001004343]

2. HdM-BLCA-1, N = 27, Boll et al.18

EGA study ID EGAS00001007086
3. SNY-2017, N = 25, Snyder et al.5

dbGaP accession ID phs001743 [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs001743.v1.p1]

4. MIAO-2018, N = 26, Miao et al.2

dbGaP accession ID phs001565 [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs001565.v1.p1] and
phs000694 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs000694.v3.p2]

5. UC-GENOME, N = 191, Rose et al.19

dbGaP accession ID phs003066 [https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs003066.v1.p1]

6. UNC-108, N = 89, Damrauer et al.16

Omnibus accession ID GSE176307
Three patient samples were excluded due to corrupted raw data

files (IMvigor210: 10059, 10119, SNY-2017: 9881). Patient 4072 of the
SNY-2017 cohort was excluded due to low tumor mean coverage
according to the publication.

As a validation cohort, data of the JAVELIN Bladder 100 cohort
(ClinicalTrials.gov identifier: NCT02603432)45 was obtained from
MerckHealthcareKGaAunder a data sharing agreement. Thedataset is
derived from biological samples of advanced bladder cancer patients
who received chemotherapy, randomly assigned to best supportive
care alone or in combination with the anti-PD-1 drug avelumab. From
this cohort, we included 123 patients ranked as responder or non-
responder to immunotherapy following RECIST1.1 criteria.

Single nucleotide variant calling
All paired tumor and germline WES samples were processed using the
same pipeline following the GATK pipeline (version 4.0.1.2). Raw
sequencing reads were trimmed using cutadapt (version 4.1), the
quality was controlled using fastQC (version 0.11.7). Reads were
aligned to the reference genome GRCh38 using BWA (version 0.7.17),
and, in cases of several fastq files per patient,merged into one BAM file
using GATKMergeSamFiles. Next, intervals and INDELs were realigned
using the GATK RealignerTargetCreator and IndelRealigner to finally
calibrate base scores and mark duplicates using GATK Base-
Recalibrator. A summary file of the final BAM file was built using GATK
GetPileupSummaries, contamination was estimated with GATK Cal-
culateContamination and coverage using qualimap (version 2.2.1). A
metrics file was built using GATK CollectAlignmentSummaryMetrics.
Mutations were called with the three callers GATK Mutect2, Strelka2
(version 2.9.10) and VarScan2 (version 2.4.4). We used SAMtools
(version 1.12) mpileup to build the input for VarScan2. Additionally to
the default filters, Mutect2 was run using the germline-resource file
somatic-hg38_af-only-gnomad.hg38.vcf.gz from gatk hg38 and GATK
FilterMutectCalls using the contamination file previously generated.
For all callers onlymutations flagged as PASS were kept. We then build
an ensemble file of mutations detected by a minimum of two out of
three callers using bcbio-variation ensemble (version 0.2.2.6) and
annotate them with VEP (version 104). Maf files were generated using
vcf2maf (version 0.1.16). Final filters applied to mutations were a
population-wide allele frequency under 5% (gnomAD), a minimum
sample depth of 30, and a minimum alternative allele depth of 3.
Maftools R-package (version 2.10.0) was used for TMB calculation

(non-synonymous mutations per capture size of 50Mb)57. For two
patients of the IMvigor210 cohort, the variant callers detected zero
somatic mutations (10124, 10299). In patient 6428 of the SNY-2017
dataset, none of the called mutations passed the filter. We identified a
total of 64,275 somatic non-synonymous mutations in 15,439 genes.
This represents an average of 202 non-synonymous mutations per
patient (318 patients with WES data). If we only considered the 236
patients classified as responders or non-responders and with WES
data, the average was similar (210 mutations per patient).

The selection of tested tumor suppressor and oncogenes was
obtained from the following sources: COSMIC (https://cancer.sanger.
ac.uk/cosmic/census?tier=2, last accessed September 11th 2023) as
well as reported chromatin modifying genes, chromatin regulating
genes and common bladder cancer genes. A complete list is provided
in Supplementary Data 1.

Somatic copy number alterations
The ASCAT R-package (version 3) was used to obtain tumor purity and
local allele-specific copy number estimates fromWES samples. ASCAT
was run following the recommendations of version3 for WES data.
AlleleCount (version 4.3.0) was used to generate LogR and BAF files.
The necessary locifilewasdownloaded from the nf-core/sarek pipeline
(release 3.1.) and subsetted for loci of the according BED file. We have
tested differences between responders and non-responders using Chi-
square tests for somatic copy number alterations of a selection of
genes significantly amplified or deleted in TCGA (taken from Sup-
plmentary Table 2 of Zack et al.)58.

Mutation clonality
Mutations with a cancer cell fraction (CCF) above 0.9 were considered
clonal. CCF was calculated as: CCF = vaf =p*ð2*ð1� pÞ+ c*pÞ, with c
being the copy number at the mutation position and p the tumor
sample purity18. Patients with a tumor samplepurity of 1 were excluded
from the clonality analysis.

APOBEC-enrichment estimation
To evaluate the enrichment of the apolipoprotein B mRNA editing
catalytic polypeptide-like (APOBEC)mutational signature, we used the
trinucleotideMatrix function from the maftools R-package (version
2.10.0) assessing the enrichment of C>Tmutations within TCWmotifs
relative to the overall count of C>T mutations compared against a
backgroundof cytosines andTCWmotifs. Sampleswith an enrichment
score exceeding 2 and a p value below 0.05 were deemed statistically
significant. Additional mutational signatures were obtained with the
deconstructSig R-package (version 1.9.0)59 with COSMIC signatures
and normalized by exome trinucleotide context (tri.counts.method
= ‘exome’).

Neoantigen and HLA prediction
The 4-digit HLA genotype corresponding to each patient was deter-
mined using the nf-core/hlatyping pipeline (release 1.2.0)60 and the
OptiType HLA genotyping algorithm (version 1.3.5)61. OptiType was
executed with default parameters on blood samples to ascertain the
HLA alleles of each patient. Subsequently, we generated all possible
9-mer peptides encompassing a mutation and their non-mutated
counterparts. The peptide sequences were obtained from Ensembl
GRCh38. The binding affinity of tumor peptides to MHC-I molecules
was predicted using NetMHCpan (version 4.0)62 applying an IC50

threshold of 500 nM.

Gene expression quantification
Total stranded RNA-Seq reads for all cohorts but UNC-108were quality
assessed using both FastQC (v0.11.5) and FastQScreen (v0.14.0) soft-
ware 65. Bulk RNA-Seq sequencing reads from tumor samples were
aligned to the human reference genome GRCh38 reference and the
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gencode annotation (version 41) using STAR (version 2.7.8)63. We
checked the strandedness of the dataset with the RSeQC program64

and, according to the result, we used the appropriate mode of
featureCounts65, from the Subread package (version 2.0.3), to quantify
the gene expression. Normalization was performed by converting
counts to transcripts permillion (TPM).We integrated the information
by using Z score transformation of log2(TPM) values in each of the
datasets.

Analysis of RNA-Seq data
Deconvolution values were obtained per dataset using the CIBER-
SORTxmethod on thematrices of TPMexpressionwith the LM22gene
signature and B-mode batch correction in absolute mode27. A selected
list of gene signatures previously described to be associated with ICI
response was tested using the Bioconductor package GSVA66. GSVA
scores were calculated per dataset and then merged for analysis. We
computed the following gene signatures: CD8 T effector cell
signature9, CD8T effector cells fromMcDermott32, CD8T effector cells
POPLAR33, 12 chemokines67, IFN-γ35, IFN-gamma from Cristescu36,
Stroma and EMT43, inflamed T cells35, TGF-β9, VIGex37, APM39, NeutIFN-
15 (Interferon-stimulated neutrophils)38 and signatures for HLA-I and
HLA-II including the protein-coding HLA genes. A complete list of the
genes included in the signatures can be found in the Supplemen-
tary Data 1.

The gene expression data was also used to classify the samples
by molecular bladder cancer subtype BLCAsubtyping R-packages
(version 2.1.1)10.

Data normalization
Weobserved that the tumor samples from IMvigor210 had higherWES
sequencing coverage than the other datasets while, among germline
samples, HdM-BLCA-1 samples showed the highest coverage (Supple-
mentary Fig. 15). These differences, however, did not influence the
calling of mutations, as WES coverage and TMB were not correlated
(Supplementary Fig. 15).

The purity of the tumor samples was quite homogenous across
datasets, with a mean value of 0.569 (Supplementary Fig. 15). As
expected, we identified a significant negative correlation between the
tumor sample purity estimate obtained from ASCAT and the absolute
immune cell infiltration score from CIBERTSORT (r = −0.469,
p value < 0.001).

The TMB estimates from the targeted DNA sequencing datasets
UC-GENOME and UNC-108 had higher values than the estimates from
WESdata (Supplementary Figs. 16 and 17). To correct for this effect, we
normalized the TMB values by dataset using Z scores.

RECIST and clinical data
For the analysis of the association of biomarkers to immunotherapy
response, we restricted the cohort to patients responding to the
treatment (partial responders and complete responders) and not
responding (progressive disease) following the RECIST1.1 criteria.
Patients with a RECIST status of stable disease were not considered
for the comparison of response groups. Although several studies
have included the stable disease status as non-responders9,15,16, we
aimed for a more conservative approach with the intention of a
clearer separation between the response groups, as done previously
by other groups36. Out of the initial 707 patients, there are 56
complete, 107 partial responders and 303 patients with progressive
disease status. Clinical data was collected from the corresponding
publications and data repositories. The clinical variables found to be
significantly different between responders and non-responders
using a two-sided, two-sample Wilcoxon test were ECOG ≥ 1 and
liver metastasis. For 202 patients, no information on liver metastasis
status was available and there was no ECOG evaluation for 44
patients

lncRNA signature
We generated a signature of tumor-specific long non-coding RNAs
(lncRNA) expression (Supplementary Fig. 3). The lncRNAs included
transcripts annotated as intergenic long non-coding RNAs as well as
processed pseudogenes. Only lncRNAs with an expression above the
75% threshold for each dataset were considered. Gene expression data
from a collection of 54 tissues from The Genotype-Tissue Expression
(GTEx) project was collected. LncRNAs with significant expression
(median expression higher than 0.5 TPM) in any non-reproductive
tissue were discarded, resulting in the generation of lists of potential
tumor-specific lncRNAs per cohort.

Additionally, we selected lncRNAs with matches in the publicly
available cancer-associated immunopeptidomics dataset published by
Chong and co-workers68. This restricted our initial list of lncRNAs to
those generatingpeptides that could specificallybindHLA receptors in
melanoma. Thiswas doneper dataset independently; a GSVA score per
patient was calculated as a gene signature of the selected tumor-
specific lncRNAs. The list of lncRNAs selected for each of the cohorts
with RNA-Seq data can be found in Supplementary Data 1.

Response prediction models
Themachine learning framework developed for this project consists of
three different components (Supplementary Fig. 18). The first one
comprehends all the preprocessing steps such as scaling and encod-
ing. In the training phase, the best hyperparameters for the ML algo-
rithm are chosen via 15-fold-cross-validation and repeating this
process multiple times (100 or 1000) in order to ensure that the
parameters do not fit a particular seed. Following training, the model
undergoes evaluation, where two different strategies are imple-
mented. The first one is the commonly used train/test method. In our
case, we separated the data by using a 70/30 split, leaving 30% of the
data unseen by the predictivemodel. Using the randomly selected 70%
we perform a 15-fold cross-validation for training themodel. We tested
with the remaining 30% of the data and obtained all the metrics
(including AUC).

For themodel we selected a set of variables that were found to be
significantly associated with the response andwhich showed relatively
low correlation among themselves and the least possible overlap in
cases of gene signatures. The complete model includes the following
variables: mutation-based variables (TMB (Z score muts/Mb), nonstop
mutations (muts), APOBEC-enrichment score), gene expression of
selected genes (Z score (log2TPM) of PD-1, PD-L1, CCND1), immune
signatures (GSVA scores of IFN-γ, stroma/EMT, inflamed T cells, TGF-β
and antigen-presenting machinery pathways) and a signature of
tumor-specific and -expressed lncRNA (GSVA score), immune cell
abundance (CIBERSORT scores of M1 macrophages, CD4 memory
activated T cells, CD8 T cells and regulatory T cells), as well as clinical
information (ECOG ≥ 1 (Y/N), liver metastasis (Y/N)).

We tested three different machine learning algorithms on our
data to build a robust prediction model. Logistic regression with L1
regularization type was used as a baseline model. Another model that
showed better performances than logistic regression and also pro-
vided positive and negative coefficients is the stochastic gradient
descent. Finally, random forest was used for the final model. This
method is very robust to outliers by averaging the scores of all the
trees that comprehend the forest. Note that the feature importance
that can be extracted from the random forest is based on the gini
impurity decrease; hence, they are always positive as they are
percentages.

To account for the limited sample size, we tested the model with
1000different seeds formore robust and reliable scores. Furthermore,
we integrated Bootstrap .632+ as an internal validation technique. This
method provides information on how the model may behave in dif-
ferent datasets not involved in the training phase69. Additionally, we
repeatedly run the model, removing one of the five datasets that have
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RNA-Seq data respectively. The AUC did not change by more than
0.016 (2.14%) when UNC-108 was removed, and by 0.007 (0.94%) for
the rest of the datasets, ensuring that our results are not driven by one
of the datasets.

Finally, we tested the model in the independent validation cohort
JAVELIN Bladder 100 trial. We were provided with processed gene
expression and mutation call data. From the TPM matrices, we
obtained the gene expression levels of selected genes (PD-1, PD-L1,
CCND1), immune signatures using GSVA (IFN-γ, stroma/EMT, inflamed
T cells, TGF-β, and antigen-presenting machinery pathways), and
immune cell abundances from CIBERSORT (M1 macrophages, CD4
memory activated T cells, CD8T cells, and regulatoryT cells). From the
list of calledmutations per patient, we obtain an estimate of TMB. Due
to the lack of raw WES data and incomplete clinical information, we
could not determine the number of non-stop mutations, the APOBEC-
enrichment score, the status of liver metastasis, or the ECOG score of
the patients. Moreover, raw RNA-Seq data would have been needed to
compute the signature of tumor-specific lncRNAs. We used the
TMB+RNAmodel (Fig. 6A), the lncRNA signature was given a 0 value.

Statistical analysis
Plots weremainly generated using R (version 4.1.2), Rstudio (version 1.4)
and Python (version 3.8.6). When comparing continuous variables
between the two response groups, significance levels were obtained
using the two-sided, two-sampleWilcoxon signed-rank test.We used the
Bonferroni correction post-hoc to assess the significance of the effect of
expression of single genes or gene signatures. As 15 gene signatures
were tested, the adjusted alpha for gene signatures was 0.00033. For
genes, the alpha for adjusted p values was 0.00029. When comparing
ratios the Fisher exact test was employed. Pearson correlation was used
to compare numeric variables.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Supplementary Information file contains Supplementary Figures
and Tables indicated in the text. Supplementary Data 1 file contains a
list of the variables investigated, descriptive statistics of the distribu-
tion of the variable values in different groups of patients, and
numerical values related to the plots in the Figures. Source data are
provided as a Source Data file with this paper. The clinical data ana-
lyzed in this study can be accessed in the following databases: IMvi-
gor210 (EGA study ID EGAS00001002556)9, HdM-BLCA-1 (EGA study
ID EGAS00001007086)18, SNY-2017 (dbGaP accession ID phs001743)5,
MIAO-2018 (dbGaP accession ID phs001565)3, UC-GENOME (dbGaP
accession ID phs003066)19, UNC-108 (Omnibus accession ID
GSE176307)16 and the JAVELIN Bladder 100 (ClinicalTrials.gov identi-
fier: NCT026034329)45. Source data are provided with this paper.

Code availability
The code for the model and decision trees is available from the github
repository https://github.com/EvolutionaryGenomics-GRIB/ML_
Pipeline. The trained model can be executed at https://github.com/
EvolutionaryGenomics-GRIB/BLCA_ICI_Response_Predictor (release
v.1.0.0)70.
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Abstract

Stop-loss mutations extend protein translation into the 3’ untrans-

lated region (3’ UTR), with potential consequences for tumorigenesis

and immune recognition. These mutations have been linked to im-

munotherapy respons e and protein loss in tumor suppressor genes. In

this study, we analyzed a dataset of 2,066 stop-loss mutations across

32 cancer types to identify recurrently mutated genes. Among several

recurrently mutated genes, we observed the same stop-loss mutation

in the oncogene PTMA 14 times, highlighting a potential functional rel-

evance for cancer progression. Additionally, we found that oncogenes

were significantly enriched in stop-loss mutations, whereas tumor sup-

pressor genes were not. To explore the potential immunogenicity of

these mutations, we examined immunopeptidomics data and identified

peptides corresponding to stop-loss-derived extensions. These findings

suggest that stop-loss mutations could contribute to tumorigenesis and

immune recognition, offering new insights into their role in cancer

biology and immunotherapy. Further research is needed to explore

their functional impact and therapeutic potential.
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Instructions

Stop codons (UAA, UAG, and UGA) terminate the ribosomal translation

of a coding sequence. A mutation converting a stop codon to a sense

codon, referred to as a stop-loss, stop-lost, or non-stop mutation, causes

translation into the 3’ untranslated region (UTR). The extension of

the protein continues up to the next in-frame stop codon or the polyA

tail of the mRNA molecule. A bioinformatics analysis by Shibata and

Ohaka et al. (2015) showed that most canonical stop codons are

followed by a downstream stop codon, thus cases, where the mRNA

lacks a stop codon, are rare, and their translation is expected to be

limited by destabilizing and accelerated degradation of the mRNA

molecule and the nascent protein (Klauer and van Hoof, 2012; Shibata

et al., 2015). The same study reported that the average extension of

the peptide sequence is 27.8 amino acids, while another study reports

a median extension of 18 amino acids (Dhamija et al., 2020). Similarly,

Flores et al. report that around 5% of the stop-loss mutations were

missing a downstream stop codon (Flores et al., 2024).

Around 0.2% of the non-synonymous mutations in the Human Gene

Mutation Database are stop-loss mutations. Some of these have been

related to heritable diseases, underlining the effect of the mutation

on the functionality of the protein (Shibata et al., 2015). The trans-

lation into the 3’UTR can also be caused by a readthrough where the

ribosome does not terminate at the stop codon (Arribere et al., 2016).

The resulting C-terminal extension can be digested into peptides and

loaded onto a MHC in the endoplasmic reticulum.

Stop-loss mutations have also been observed in cancer. A well-known

example is a stop-loss mutation generating an extension of 40 amino

acids in the tumor suppressor SMAD4 (Dhamija et al., 2020). This

extension is associated with increased degradation of the protein via

a newly created hydrophobic degron sequence. Other examples of

protein loss due to stop-loss mutations are the renal tumor suppres-

sor genes BAP1, PTEN, and VHL (Pal et al., 2025). While the short
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stop-loss extension of PTEN and VHL are thought to affect the pro-

teins’ stability, leading to proteasomal degradation, stop-loss mutations

in BAP1 result in a very long extension that leads to translation in-

hibition of the mRNA. A study in which the effect of 2,335 cancer

stop-loss mutations in protein levels was tested indicated that protein

degradation-promoting extensions tend to have higher hydrophobicity

than those that do not have such an effect (Ghosh et al., 2024).

In a previous study, we reported that a high stop-loss mutational

burden is significantly associated with a positive response to im-

munotherapy in bladder cancer (BLCA) patients (Boll et al., 2025).

One possibility is that some of the stop-loss mutations create tumor-

specific neoantigens that evoke an immune response against the cancer

cells. The potential immunogenic effect of peptides originating from

the readthrough of a stop codon is also supported by the work of

Goodenough and colleagues where aminoglycosides, a drug against

premature stop codon mutations, was found to enhance stop codon

readthrough, leading to an increased CD8+ T cell response due to

HLA-I presented epitopes (Goodenough et al., 2014).

To better understand the impact of stop-loss mutations in cancer, we

have performed an analysis of the mutational patterns in tumor sam-

ples from 12,224 cancer patients. This has increased our initial set of

85 stop-loss mutations in BLCA (Boll et al., 2025) to 2,066 stop-loss in

32 different cancer types. Using this data, we have identified several

new recurrent stop-loss mutations, which might have cancer-promoting

effects. We have also observed that the proportion of stop-loss mu-

tations versus missense mutations shows a significant enrichment in

oncogenes when compared to tumor suppressor genes, supporting the

oncogenicity of some of these mutations. Finally, we have obtained

evidence that stop-loss mutations can generate novel tumor-specific

antigens, which could be useful for therapeutic applications.
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Results

3.3.1 Building a catalogue of cancer-associated stop-loss
mutations

We have built a catalogue of 2,066 stop-loss mutations found in sam-

ples from different cancer patient cohorts (Table 3.1, Table S1). The

mutations were found in 1,284 patient samples out of the 12,224

analyzed (10.5%), and they were located in 1,821 different protein-

coding genes. Most stop-loss mutations were identified in tumors of

the genitourinary system (980), followed by the respiratory system

(424), and digestive system (380). As expected, cancer types that

have been reported to have a high mutational load also carried many

stop-loss mutations; this included bladder cancer (253), lung (LUAD

187 and LUSC 157), and melanoma (168). The highest number of

stop-loss mutations was derived from patients with uterine corpus

endometrial carcinoma (423).

Mutation recurrence is a hallmark of cancer-driver mutations. We iden-

tified 179 recurrently stop-loss mutated genes, present in the samples

of at least two patients (9.83% of the stop-loss mutations). Several

genes had stop-loss mutations in several cancer samples, including 36

genes that were mutated in at least three patients (Table 3.2). One

of these genes, PTMA, which encodes the protein polypeptide prothy-

mosin alpha (proTα), was mutated in 14 different samples. Eight

other genes, including cyclin T1 (CCNT1) and immunoglobulin kappa

constant (IGKC), were mutated between 4 and 9 times.

We also investigated if stop-loss mutations tended to be more clonal

than missense mutations. However, we found no significant differences

in the proportion of clonal versus subclonal mutations between the

two types of mutations (Table S2).
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Table 3.1: Overview of the datasets included in this study. Cohort names, can-
cer type, published data accession number, and the accessed data type.
Matched WES indicates that the mutations were called using paired tu-
mor/control samples. VCF file indicates that the mutations were extracted
from the variant calling files from the corresponding studies. BLCA: blad-
der cancer; HNSC: head and neck squamous cell carcinoma; LIHC: liver
hepatocellular carcinoma; LUAD: lung adenocarcinoma, NSCLC: non-
small cell lung cancer; SKCM: skin cutaneous melanoma. *The number of
TCGA patients and cancer types analyzed can be found in Table S1

Dataset N Cancer Type
Accession

Portal Accession number
Mutation

source
Non-syn.

mutations
Stop-loss

mutations (%)

IMvigor210 240 BLCA EGA EGAS00001002556
Matched

WES 48696 68 (0.14)

HdM-BLCA-1 27 BLCA EGA EGAS00001007086
Matched

WES 5781 6 (0.10)

MIAO-2018 27 BLCA dbGaP phs001565
Matched

WES 5269 6 (0.11)

SNY-2017 25 BLCA dbGaP phs001743
Matched

WES 4477 5 (0.11)

FIS_20200101 97 BLCA medRxiv - Tumor WES 16657 24 (0.14)

Chong 9 LUAD, SKCM EGA EGAS00001003723
Matched

WES 4509 4 (0.09)

Kraemer 4 SKCM EGA EGAS00001006298
Matched

WES 889 1 (0.11)

Bassani-Sternberg 5 SKCM EGA EGAS00001002050 VCF file 6856 1 (0.01)

Loeffler 17 LIHC Figshare - VCF file 2250 3 (0.04)

Roper/Yue 15 LUAD dbGaP phs002001 VCF file 5368 6 (0.11)

Samstein 1611
NSCLC, SKCM,

HNSC cBioPortal tmb_mskcc_2018 VCF file 20032 6 (0.03)

TCGA* 10147 33 cancer types GDC Portal - VCF file 2147998 1936 (0.09)

Total 12224 2268782 2066 (0.09)

Stop-loss mutations in the PTMA gene

The most recurrently mutated gene was prothymosin alpha (PTMA),

which had a stop-loss mutation in 14 TCGA patients. Interestingly, all

patients had the same T>C polymorphism in the TAG stop codon lead-

ing to a translation of a glutamine (CAG → Q) and an extension of nine

amino acids to the next in-frame downstream stop codon (Figure 3.1).

None of the other seven possible changes leading to other amino acids

was observed (Figure S1). The mutation was found in 7 samples of tes-

ticular germ cell cancer (TGCT), 1 colorectal cancer (COAD), 1 cervical

squamous cell carcinoma and endocervical adenocarcinoma (CESC),

1 esophageal carcinoma (ESCA), 1 kidney renal clear cell carcinoma

(KIRC), 1 liver hepatocellular carcinoma (LIHC), 1 sarcoma (SARC)

and 1 uterine corpus endometrial carcinoma (UCEC). Additionally,

the same mutation was found in two cancer patients in the nonstop
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Table 3.2: Most recurrent stop-loss mutations over all datasets. Listed are the 36
genes with stop-loss mutations found in at least three patients.

Gene
Stop-loss
mutation

Tumor
source System Cancer types

PTMA 14 TCGA digestive, genitourinary, neurological
TGCT, CESC, COAD, ESCA,
KIRC, LIHC, SARC, UCEC

CSN2 9 TCGA genitourinary, neurological GBM, UCEC

CCNT1 5 TCGA cardiovascular, genitourinary LAML, OV

IGKC 5 TCGA digestive, genitourinary BLCA, BRCA, CESC, COAD

RDH16 5 IMvigor210, TCGA genitourinary, integumentary, respiratory BLCA, MESO, SKCM

ST6GALNAC3 5 TCGA respiratory HNSC, LUAD

CPS1 4 TCGA respiratory LUAD

LARP4 4 TCGA cardiovascular, genitourinary LAML, OV

PCDH9 4 TCGA digestive, genitourinary BLCA, COAD, ESCA, STAD

AC026703.1 3 TCGA digestive, genitourinary COAD, READ, UCEC

BCL7C 3 TCGA digestive, genitourinary CESC, STAD, UCEC

CADM1 3 TCGA digestive, genitourinary LIHC, PRAD

CCL7 3 TCGA genitourinary, respiratory LUAD, LUSC, UCEC

CGN 3 TCGA integumentary, neurological, respiratory LUSC, SARC, SKCM

CLEC2B 3 IMvigor210, TCGA digestive, genitourinary BLCA, COAD, STAD

CLSTN2 3 TCGA respiratory LUAD

DEFB119 3 TCGA genitourinary UCEC

EDDM3A 3 TCGA respiratory LUAD

EXTL2 3 TCGA cardiovascular, genitourinary LAML, OV

FANCI 3 TCGA digestive, neurological ESCA, GBM

HIST1H4K 3 Roper, TCGA digestive, genitourinary, respiratory CESC, ESCA, LUAD

HIST1H4L 3 TCGA digestive, genitourinary BLCA, STAD

HSPA8 3 TCGA digestive COAD

IDH3B 3 TCGA genitourinary, lymphatic KIRP, THYM

MPP2 3 TCGA genitourinary, integumentary, respiratory LUAD, SKCM, UCEC

OR52A5 3 TCGA genitourinary KIRC

OR5D16 3 TCGA genitourinary UCEC

PADI1 3 TCGA digestive COAD

PLA2G1B 3 TCGA digestive, genitourinary, respiratory BLCA, HNSC, READ

PLCB1 3 TCGA respiratory LUAD

PRDM4 3 TCGA cardiovascular, neurological GBM, LAML

SF3B3 3 TCGA integumentary, respiratory LUAD, SKCM

SKIL 3 TCGA genitourinary BRCA, UCEC

TMTC3 3 TCGA respiratory LUAD

ZIC5 3 TCGA digestive, genitourinary COAD, UCEC

ZIM3 3 TCGA respiratory LUAD
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database, in TGCT and ganglioblastoma (https://nonstopdb.dkfz.de/,

accessed 31st of Oct 2024)(Dhamija et al., 2020).

PTMA encodes the polypeptide prothymosin alpha (proTα), a rela-

tively small protein with a length of 111 amino acids and a large

proportion of negatively charged amino acids (39 glutamic (E) and

18 aspartic acids (D)(Figure 3.1). Both the protein sequence as well

as the C-terminal extension (’QTAKKEKLN’) are hydrophilic (GRAVY

hydrophobicity index of -1.97 and -1.92, respectively). Predicting the

HLA I binding probability of peptides from the protein extension did

not yield potential neoantigens. The protein has a nuclear transport

motif, TKKQKT, at the protein’s C-terminus (Manrow et al., 1991)

(Figure 3.1).

Q T A K K E K L N

Peptide
extension

T
A
G

C
A
G

Nuclear
transport motif

Thymosin alpha 1

M S D A A V D T S S E I T T K D L K E K K E V V E E A E N G R D A P A N G

N A E N E E N G E Q E A D N E V D E E E E E G G E E E E E E E E G D G E E

E D G D E D E E A E S A T G K R A A E D D E D D D V D T K K Q K T D E D D *

Figure 3.1: Sequence of the proTα protein. The extension generated by the T>C
mutation in the stop codon is indicated. In the thymus, the protein
is cleaved and thymosin alpha 1 is produced (position 2-29). The 3D
structure of thymosin alpha is taken from UniProt P06454.

The protein proTα is considered an oncoprotein and a biological re-

sponse modifier with effects on the immune system (Samara et al.,

2016). Intracellularly, it affects proliferation and cell survival (Enke-

mann et al., 2000) and prevents apoptosis by inhibiting apoptosome

formation (Jiang et al., 2003; Malicet et al., 2006). The transcription

of PTMA increases in proliferating cells, as well as its post-translational

phosphorylation and its presence in the nucleus, where it supports

chromatin decondensation by histone binding of the central domain

(Pérez-Estévez et al., 1997; Segade and Gómez-Márquez, 1999; Trum-

bore et al., 1997). In the thymus, proTα is cleaved generating thymosin

alpha, which has anti-tumoral activity by stimulating T cell production.
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Examination of PTMA expression in multiple tissues indicates that it

is expressed ubiquitously (Figure S2). The highest gene expression is

observed in EBV-transformed lymphocytes with a median of 1,757 TPM.

The lowest expression is in muscle, testis cells, blood, and heart (all

median under 200 TPMs). In accordance with early findings showing

an increased expression level for PTMA in malignant tissue compared

to healthy tissue (Tsitsiloni et al., 1994), we observed that PTMA tends

to be overexpressed in cancer tissues compared to matched controls

(Figure 3.2). The trend is very strong in tissues with recurrent PTMA
stop-loss mutations, such as TCGT and COAD (Figure 3.2). In patients

where mutation and expression data is available, the PTMA stop-loss

mutation does not seem to affect the transcript levels (Figure S3).
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Expression of PTMA in tumor and adjacent samples | TCGA

Figure 3.2: Expression levels of PTMA in cancer and matched controls. Compari-
son of the PTMA gene expression values for matched cancer/control data,
for different cancer types (left). CESC: cervical squamous cell carcinoma
and endocervical adenocarcinoma; COAD: colon adenocarcinoma; ESCA:
esophageal carcinoma; KIRC: kidney renal clear cell carcinoma; LIHC:
liver hepatocellular carcinoma; SARC: sarcoma; UCEC: uterine corpus
endometrial; TCGT: testicular germ cell tumors. For TCGT, healthy testis
expression from the GTEx project is shown compared to the expression
in tumor tissue, as no paired data was available. Each dot represents a
patient. The line in the box plot indicates the median value. The values
were compared using a Wilcoxon test. ns: no significant; ***: p-value
<= 0.001; ****: p-value <= 0.0001.
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Oncogenes are enriched in stop-loss mutations versus
missense mutations

Similarly to previous observations for missense mutations, stop-loss

mutations were more prevalent in genes already known to have roles

in cancer than in other genes. We found 26 stop-loss mutations in a

set of 77 cancer-associated genes previously described in the literature

(Robertson et al. (2017), Table S3), a higher proportion than the ap-

proximately 1 stop-loss mutation per 10 genes observed in general.

These genes contained 1.26% of all stop-loss mutations and 0.73%

of all missense mutations, the first type being significantly overrep-

resented over the second one (X2-test p-value=0.0045). We then

examined the mutations in lists of oncogenes and tumor suppressor

genes from COSMIC (Table S3). We found that only the first class

showed significant enrichment of the proportion of stop loss mutations

versus missense mutations (oncogenes n=319, 2.13% versus 1.37%,

respectively, X2-test p-value=0.0029; tumor suppressor genes n=320,

1.93% versus 1.60%, respectively X2-test p-value=0.25). Stop-loss

mutations have been related to loss of protein expression and tumor

suppressor gene inactivation by increased protein degradation, such

as in the cases of SMAD4, PTEN and VHL (Dhamija et al., 2020; Pal

et al., 2025). Our results indicate that they could also be important in

promoting the functions of oncogenes in the context of cancer.

Several of the cancer-related genes showed recurrent mutations. The

transmembrane mucin gene MUC4 has been related to aggressive be-

havior and poor outcome, especially in epithelial cancers (Xia et al.,

2016). We found two different stop-loss mutations in this gene in

two female patients with cervical carcinoma (CESC) and uterine cor-

pus endometrial carcinoma (UCEC). MUC4 is involved in epithelial

differentiation and renewal and has been suggested as a marker for

cervical cancer tissue (Munro et al., 2009). We further found two

other patients with colon cancer (COAD) and uterine corpus endome-

trial carcinoma (UCEC) carry a stop-loss mutation in RPL22. Notably,

deleterious missense and frameshift mutations in this gene have been
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repeatedly reported in microsatellite-instable endometrial and colorec-

tal carcinoma (Ferreira et al., 2014; Novetsky et al., 2013; Weinstein

et al., 2024). Another example was the gene BCL11B, mutated in

two patients with glioblastoma (GLM). The transcription factor is in-

volved in several pathways but mainly affects the development of the

nervous tissue, as well as T cell differentiation (García-Aznar et al.,

2024). Due to its pivotal role, the gene can be considered oncogenic

or tumor-suppressive. Finally, two patients with cervical (CESC) and

skin cell melanoma (SKCM) carried a stop-loss mutation in SDHD. The

gene is involved in the citric cell cycle and oxidative phosphorylation.

Two studies have investigated the negative effects of SDH expression

loss due to mutations in the promoter regions of SDHD in melanoma

patients (Scholz et al., 2015; Weinhold et al., 2014).

Highly recurrently mutated genes

Other recurrently mutated genes were the cyclin CCNT1 and RDH16,

involved in the metabolism of retinoids, both found to be mutated

in five patients. Further, we found IGKC, LARP4, and PCDH9 to be

stop-loss mutated in four patients. LARP4 is involved in the RNA

metabolism, stabilizing the poly-A tails, and was found to be mutated

in 3 patients with ovarian cancer and a patient with leukemia. The

immunoglobulin kappa constant IGKC affects the immune system by

enabling antigen binding activity and immunoglobulin receptor activity.

An additional 18 genes were mutated in three cancer patients. Among

them HIST1H4K and HIST1H4L, which are both part of the histone 4

family crucial during cell replication. Other stop-loss mutations were

found for histone 1 (HIST1H1C, HIST1H1E), histone 2 (HIST1H2AI,
HIST1H2BD, HIST1H2BJ, HIST1H2BN), and histone 3 (HIST1H3C,

HIST1H3E). All of these stop-loss mutations are located in the H1

cluster, the largest histone gene cluster located at 6p22.2 containing

more than 50 histone genes.
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Peptide extensions from stop-loss have similar properties as
potential intronic ORFs

Next, we computed 1066 unique protein extensions resulting from

stop-loss mutations. Cases with no downstream stop codon found

in the transcript were discarded. The median length of an extension

was 16 amino acids, with 95% being shorter than 80 amino acids

(Figure 3.3). This value is similar to the average extension of 18

amino acids predicted for the stop-loss mutations in the NonStopDB

(Dhamija et al., 2020). We were further interested in testing if the

extensions had different amino acid composition and properties than

canonical sequences and intronic regions. For this, we translated

potential intronic open reading frames (iORFs) in human introns. We

focused on hydrophobicity and isoelectric point. While the stop-loss

extensions and iORFs showed a similar, symmetrical hydrophobicity

distribution, canonical sequences were overall less hydrophobic with a

much more compact distribution (p-value = 2.2e-16). Further, most

canonical proteins had an isoelectric point (iP) under 10 (90%), with

several local maxima. Again, the stop-loss extensions resemble more

the pattern of intronicORFs than the canonical sequences, being less

centered around the mean body pH of 7.35-7.45, and showing an

extended distribution towards more basic values.

HLA I-bound peptides generated by stop-loss mutations

The protein extensions resulting from the stop-loss mutations can be

a source of tumor-specific antigens. Analysis of two immunopepti-

domics datasets from melanoma comprising 30 patients (Bassani-

Sternberg et al., 2016; Chong et al., 2020) identified 10 tumor-specific

peptides that corresponded to extensions derived from stop-loss muta-

tions (Table 3.3). In three cases the mutations had originally also been

identified in melanoma samples (SKCM), indicating that they could

be recurrent cases. We identified repeated hits to an extension in the

gene NME1, which codes for nucleoside diphosphate kinase (NDK).

The gene is expressed at reduced levels in some highly metastatic
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Figure 3.3: Properties of extensions from stop-loss mutations compared to
canonical proteins and intronic ORFs. A: Amino acid length of pre-
dicted peptide extension resulting from stop-loss mutations (N=1,590).
B: Hydrophobicity in stop-loss extensions, canonical peptides, and in-
tronic open reading frames (iORFs). Hydrophobicity was computed using
the KyteDooLittle scale. C: Isoelectric point in the stop-loss extensions,
canonical peptides, and iORFs. The isoelectric point was calculated using
the EMBOSS pK scale. Wilcoxon test was used to compare stop-loss exten-
sions to iORFs and canonical sequences. The statistics of the distributions
are provided in Table ??.

cells, but increased NME1 levels are found in neuroblastoma. The

findings support our hypothesis that stop-loss mutations can generate

new tumor-specific antigens.
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Table 3.3: Peptide hits of mass spec immunopeptidomics data from melanoma
patient samples. We show the significant hits to all possible peptides
newly generated by the stop-loss mutations detected in the different
cancer samples. The first five different peptides are fully located in the
extension; the other five span the protein C-terminus and part of the
extended region. The hits were identified with MHCquant (FDR < 1%).
The source refers to the immunopeptidomics dataset in which hits were
detected. PXD004894 consists of 23 patients and PXD013649 consists of
7 patients. Tumor refers to the cancer type in which the mutations were
originally detected.

Peptide Gene Source Samples Tumor Protein Extension

EVSPAPWNR RGS14 PXD013649 T1185B KIRP

QLPNSPGQLHGTRRAEHAMGPLCMPCLCHECP
WPLPAMGRPAGRAGRGGKGTQMRHTPQLPPPC
PSTSSPPIPCSQATMGEVSPAPWNRLAQHGGMA
ALAVPASPACAKLQQGQEEGPAPPQEAGMSKALR
VQAGSPVPHPHRLYCTYRFCSRLGAAGFVLDV

TAAVKKHAL IL1RAPL1 PXD004894 MM4 SKCM
QKSKGHPVPGRLSGICSPVPGTKSSTAAVKKHAL
ESLEHEEKQGLVHMFFGISL

RRSILDLHLT CIAO1 PXD004894 MM8 SKCM
ATSTLDRVMTPQKTSYKTLPAPERTRRSILDLHLT
WLTSLQTWVEVQSHRIAFLPRL

YLQELHHNL NME1 PXD004894 (1),
PXD013649 (3)

MM33,
Me275,
Me290,
T1015A

UCEC
QEGRPHCFSHPFPLLPMGRGPGCRKSSYLQELHH
NLEGSSWSCEFSLYSVTIPDHLIKMLPPSIGFIELVT
SYCCIAFFSFFSCTLNNLT

ETDSIHIEY JUNB PXD013649 OMM475 CESC

TSPAPLRTPPRLDGWAHASHWGPGSRRWAPTLGP
RGAANHTGLRPSYPAPSPSTSTFTSPPFHFFLYVFFL
LETDSIHIEYNIFVYLTGRGRGGDRGGAGPAAWYS
SPRGHWEGDPRPLPSPLCTVLWKRNTHLVSKEFILR
RVCVCVCLFFLLNLFK

SHSKYRTKL CREG1 PXD004894 MM12 UCEC RTKLRADPRQASSIW

YEHRKIQM EIF3M PXD013649 OMM475 BLCA KIQMHFFLTTFLL

KNLGSLRRSI OR4K1 PXD004894 (1), PXD013649(1)
MM5,
OMM475 SKCM GSLRRSIILN

HLLVARAL OVOL1 PXD004894 MM12 KIRP
VARALGVLLEAPRASRIASQLPGQPTLLQPLTRTPVI
RTGAPVPWSPPWAHVLTQAQQ

TGKKKLNL PPIP5K2 PXD004894 MM39 UCEC NLSRSWNFLYL
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Discussion

Studies on mutated genes in cancer have mostly focused on missense

mutations; in contrast, stop-loss mutations have been barely investi-

gated. Here we have combined mutation data from different cancer

patient cohorts to build a large catalogue of stop-loss mutations, com-

prising 2,066 cases in 32 different cancer types. This includes data

from TCGA and other independent cancer patient cohorts (N = 12,224

patients). Overall, stop-loss mutations are found in approximately one

out of ten samples. By aggregating data from thousands of patients we

have obtained an unbiased view of their distribution in different types

of cancer genes and their level of recurrence. In contrast to another

previous catalogue of stop-loss mutations (NonStopDB, Dhamija et al.

(2020)), which was enriched in the digestive system and respiratory

system, cancer with the most mutations here was uterine corpus en-

dometrial carcinoma. While the NonstopDB is built on mutations from

the COSMIC catalogue, our database includes eleven individual studies

as well as the full set of mutations called in TCGA data. We did not

find stop-loss mutations in the four most recurrently mutated genes

in NonStopDB (ACO2, PRKCH, SMAD4, and CDKN2A), and PTMA was

only mutated twice in NonStopDB. These strong differences reflect the

distinct sample composition of the two catalogues.

In our study, almost 10% of the mutations were recurrent, suggesting

that some of them have oncogenic effects. Mutation recurrence is a

hallmark of cancer-driver genes (Tamborero et al., 2013). Oncogenes,

which promote tumor growth, arise due to increases in transcript

abundance or by specific mutations that make them hyperactive. For

example, 90% of the B-raf proto-oncogene (BRAF) mutations are a

substitution of a V by an E in position 600 and cause continuous cell

proliferation (Díaz-Jullien et al., 1996). Protein-inactivating mutations

are also very frequent in tumor suppressor genes. A recent study

testing the effect of stop-loss mutations in protein levels suggests that

this kind of mutation can generate hydrophobic degron motifs that

promote increased degradation of the protein (Ghosh et al., 2024). In
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SMAD4, stop-loss mutations generating such a sequence induce the loss

of the protein (Dhamija et al., 2020)), similar to the tumor suppressor

gene VHL (Dhamija et al., 2020; Pal et al., 2025)). Hydrophobic

extensions are also more likely to be loaded onto the MHC-I complex

by proteasomal degradation (Seong and Matzinger, 2004). Another

recent study related hydrophobic extensions from stop-loss to protein

loss due to destabilization of the protein (Ghosh et al., 2024). In line

with this, we found that extensions from stop-loss mutations are more

hydrophobic than the canonical sequences.

We have discovered a highly recurrently mutated gene, PTMA, with

a stop-loss mutation found in 14 different patient samples. For com-

parison, the gene SMAD4 was found mutated in 9 different patients in

NonStopDB. Interestingly, whereas the gene SMAD4 harbored six dif-

ferent stop-loss extension mutations, PTMA had the same mutation in

all the samples. This suggests that the glutamine that is being created

as a direct result of this mutation is important for the function of the

extended sequence. The protein extension, which spans 9 amino acids,

has several highly charged amino acids (3 lysines and 1 glutamic acid),

which is reminiscent of the composition of the wild-type C-terminus,

including a previously defined nuclear localization signal (Manrow

et al., 1991).

PTMA encodes a highly acidic protein, prothymosin alpha (proTα),

which has proliferative activity. The protein migrates to the nucleus

where it binds to histones and cooperates with nucleosome assembly

(Díaz-Jullien et al., 1996). High expression in different cancer types

is associated with oncogenic activity. Extracellularly it enhances the

immune system by promoting dendritic cell maturation, binding to Toll-

like receptor 4 on macrophages and neutrophils (Romani et al., 2004;

Samara et al., 2013), and increasing T lymphocyte activity in combi-

nation with interleukin-2 (Voutsas et al., 2000). In ovarian tumors,

proTα inhibits growth by restoring immunosuppressed lymphocytes

(Voutsas et al., 2013). ProTα is further the precursor of Thymosin

alpha 1 by cleavage at the N-terminal by asparaginyl endopeptidase
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(Chen et al., 2006). Similar to proTα, thymosin alpha 1 has been

associated with immune regulation by enhancing T cell differentiation,

anti-body, chemokine production (Li et al., 2010) and decreasing tu-

mor growth in different animal models (Beuth et al., 2000; Chen et al.,

2006; Moody, 2007; Qin et al., 2009; Sungarian et al., 2009).

Analysis of transcriptomics data from TCGA showed that PTMA was

overexpressed in several cancer types, with strong activation in testicu-

lar germ cell tumors, where half the stop-loss cases had been identified.

We did not observe any significant differences in the expression of the

PTMA transcript in samples carrying the stop-loss mutations versus

the rest of the samples. Taken together, these results suggest that the

mutation increases the protein’s activity which, added to the increased

expression, contributes to oncogenicity.

Previously, we reported an association of stop-loss mutations with

immune checkpoint inhibitor response in bladder cancer patients (Boll

et al., 2025). An explanation for this observation is the potential

generation of tumor-specific neoantigens from the peptide extensions

derived from stop-loss. We searched two immunopeptidomics datasets

to evaluate if tumor cells present these peptide extensions. We found

several candidates of HLA-I-bound peptides that correspond to protein

extensions predicted for stop-loss mutations in cancer samples. While

still preliminary, these results support our hypothesis that stop-loss

extensions can be a previously neglected source of tumor-specific anti-

gens with potential implications in immunotherapy and personalized

cancer vaccine development.

Our results highlight the potential role of stop-loss mutations in can-

cer. Although comparatively infrequent, we found several recurrently

mutated genes over different cancer types. Future studies could focus

on validating the immunogenic potential of stop-loss-derived peptides

through experimental approaches combining immunopeptidomics with

functional T cell activation assays. Additionally, investigating the preva-

lence and impact of these neoantigens across different cancer types

could provide broader insights into their role in immune recognition.
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Methods

Somatic mutation datasets

For this study, we have processed raw whole exome sequencing data

from paired germline and tumor samples of six datasets (IMvigor210,

HdM-BLCA-1, MIAO-2018, SNY-2017, Chong, Kraemer). Sequencing

reads were trimmed with cutadapt (v4.1) and quality-checked using

FastQC (version 0.11.7). Reads were aligned to GRCh38 using BWA

(version 0.7.17) and, in cases of several fastq files per patient, merged

with GATK MergeSamFiles. Base recalibration and duplicate marking

were done with GATK BaseRecalibrator. Contamination was estimated

with GATK CalculateContamination, and coverage was assessed us-

ing Qualimap (version 2.2.1). Alignment metrics were collected with

GATK CollectAlignmentSummaryMetrics. Mutations were called us-

ing GATK Mutect2, Strelka2 (v2.9.10), and VarScan2 (version 2.4.4),

with SAMtools (version 1.12) mpileup providing input for VarScan2.

Mutect2 used the germline-resource file somatic-hg38_af-only492 gno-

mad.hg38.vcf.gz, and filtering was done with GATK FilterMutectCalls.

Only PASS mutations were retained. An ensemble mutation file, re-

quiring detection by at least two callers, was generated using bcbio-

variation-ensemble (version 0.2.2.6) and annotated with VEP (version

104). We generated maf files using vcf2maf (version 0.1.16). Finally,

mutations were filtered for a population-wide allele frequency of <

5% (gnomAD), sample depth ≥ 30X, and alternative allele depth ≥ 3X.

Called mutation tables of five additional datasets were downloaded

(Bassani-Sternberg (Bassani-Sternberg et al., 2016), Loeffler (Löffler

et al., 2019), Roper/Yue (Roper et al., 2020), FIS_20200101 (medRxiv

2024.06.28.24309634), one of which only included mutations from a

mutation panel of 468 cancer-related genes (Samstein et al., 2019).

Finally, we have downloaded all available somatic mutation data of

the 31 TCGA cohorts. An overview of all datasets is presented in

Table 3.1, with Table S1 containing more detailed information on the

TCGA-derived data.
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The gene sets of tested tumor suppressors

and oncogenes were obtained from COSMIC

(https://cancer.sanger.ac.uk/cosmic/census?tier=2, last accessed

September 11th, 2023). Other cancer-related genes used for the

third gene list include DNA-damage repair, chromatin-modifying, and

chromatin-regulating genes (Nordentoft et al., 2014; Robertson et al.,

2017).

Mutation clonality

Processing the missense mutation of all patients with at least one

stop-loss mutation, we first, calculated the cancer cell fraction (CCF)

as CCF = V AF/p ∗ (2 ∗ (1 − p) + c ∗ p) with c being the copy number

at the mutation position and p the tumor sample purity. For a majority

of stop-loss and missense mutations, no copy number and/or tumor

sample purity information was available. We therefore used the subset

of mutations for which we obtained a CCF, to classify mutations with

a value above 0.9 as clonal. Then, we used this classification to obtain

the optimal tumor variant allele frequency threshold that separates

clonal and subclonal within this subset and applied this tumor variant

allele frequency threshold to all missense and stop-loss mutations. The

optimal thresholds used were t_vaf=0.22 for the stop-loss mutations

and t_vaf=0.21 for the rest of the missense.

Identification of tumor-specific antigens derived from stop-loss
mutations

We generated a database containing all possible extensions of canoni-

cal proteins generated by stop-loss mutations (n = 17,356 proteins).

For 1282 transcripts, no downstream stop codon was found (7.39%).

Each stop-loss mutation results in a codon that encodes one of six

or seven different amino acids, depending on the specific stop codon

affected (Figure S1). Therefore, we ended up with 100,035 potential,

unique peptide extensions. The code for the extensions prediction has

been uploaded to Git Hub (https://github.com/justalilibit/stop-loss-
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muts_in_canonical). To validate these peptides derived from stop-loss

mutations and their capability to bind HLA receptors, we downloaded

publicly available mass spectrometry immunopeptidomics data from 24

patients with metastatic malignant melanoma (PXD004894, Bassani-

Sternberg et al. (2016)), as well as 3 melanoma cell lines from patient-

derived tumors and 4 primary melanoma cell lines (PXD013649, Chong

et al. (2020)). For patient MM16, the pipeline failed.

The search was performed with MHCquant v2.6 (Bichmann et al.,

2019), an nf-core pipeline implemented in Nextflow (Ewels et al.,

2020) that uses Comet as a search engine and percolator for peptide

identification. A customized database was built by combining the

annotated human proteome sourced from Swiss-Prot/TrEMBL, includ-

ing isoforms (comprising 103,789 sequences, downloaded on 21st of

April 2023) and the 100,035 peptide sequences from the 16,074 genes

in which we mutated the stop codon. To reduce redundancies, we

removed the canonical transcripts in which the stop-loss mutation

was transformed, resulting in a total of 188,500 sequences. A false

discovery rate (FDR) of 1% was applied.

Hydrophobicity and isoelectric point

We used the R package ‘Peptides’ (version 2.4.6) to calculate the GRAVY

hydrophobicity index with the “KyteDoolittle” scale, and the isoelectric

point with the EMBOSS pK-scale.

Predicting intronic ORFs

We downloaded the database of canonical proteins from UniProt and

SwissProt to compare the properties of peptide extensions from stop-

loss mutations with canonical sequences and intronic regions. Further,

we predicted iORFs in human introns (Genome assembly hg38) using

orfipy (version 0.0.4), using a minimum peptide length of 9 amino

acids.
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Gene expression data

Gene expression values were directly downloaded from the TCGA and

GTEX projects. Whenever possible, we used matched cancer/control

gene expression data. For testicular cancer (TCGT), TCGA does not

contain adjacent data. Instead, we used healthy testis expression data

from the GTEx project.

Statistical analysis

Plots were generated using Python (version 3.8.6), R (version 4.1.2),

and Rstudio (version 1.4). When testing for enrichment between two

groups the Chi Square test was performed.
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4DISCUSSION

Cancer remains one of the leading global health burdens, character-

ized by its immense heterogeneity across and within tumor types. This

complexity necessitates tailored treatment approaches to effectively

address the diverse biological mechanisms driving cancer. Among

emerging therapies, ICIs as part of immunotherapy have revolution-

ized cancer treatment. ICIs work by enhancing the ability of the

immune system to recognize and eliminate cancer cells. Under normal

conditions, immune checkpoints, such as PD-1/PD-L1 and CTLA-4, act

as regulatory mechanisms to prevent overactivation of the immune

system and avoid damage to healthy tissues. However, many cancers

exploit these pathways by overexpressing checkpoint proteins, effec-

tively suppressing T cell activity and evading immune detection. ICI

therapies, such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies,

block these inhibitory signals, reactivating T cells and their ability to

target tumor cells.

ICIs offer remarkable benefits for some patients. However, despite

their success, predicting which patients will respond to ICIs remains

a significant challenge. Our understanding of the underlying drivers

of immunotherapy response is still limited, underscoring the urgent

need for deeper insights into tumor-immune interactions and reliable

biomarkers to guide treatment decisions.

4.1 From small to large-scale analyses of ICI
response

The first two parts of this thesis focus on the biomarker discovery in

urothelial bladder cancer in response to the ICI anti-PD-L1/anti-PD-1.

While the first chapter handles a small dataset of less than 30 patients
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(referred to as HdM-BLCA-1), we were still able to obtain meaningful

insights from the analysis.

First, we confirmed that a high number of somatic mutations is asso-

ciated with better outcomes of ICI treatment. A high TMB increases

the likelihood of producing tumor-specific neoantigens, which can be

recognized by T cells, triggering an immune response.

Tumors with high TMB often exhibit greater responsiveness to ICI, as

they present more targets for abnormal antigen presentation initiating

immune recognition. In the first dataset, we analyzed, clonal TMB

better separated the two response groups than total TMB, suggesting

that cancer heterogeneity negatively relates to ICI response. This is

coherent with studies in melanoma and non-small cell lung cancer

(McGranahan et al., 2016; Wolf et al., 2019), as well as a dataset

of urothelial bladder cancer by Miao et al. (referred to as MIAO-

2018) (Miao et al., 2018). We extended our analysis by including

the bladder cancer cohort SNYDER-2017 (Snyder et al., 2017). Al-

though clonality could not be calculated, we showed that high variant

allele frequency significantly separates treatment responders and non-

responders. Compared with this, the meta-analysis of the six different

cohorts also showed more clonal non-synonymous mutations among

the response group, but we did not find clonal TMB to be a better

predictor for response than the total TMB. This meta-analysis also

includes the MIAO-2018 dataset, where we were unable to replicate

their result of responders having a significantly higher clonal TMB.

Similar results were obtained for the predicted neoantigen burden.

While the number of neoantigens originating from clonal mutations

showed a stronger separation of responders and non-responders in

the smaller cohort, this was not found in the combined cohort. This

highlights how small datasets can include subgroups where specific

effects appear significant but are no longer observed in larger cohorts.

Moreover, differences in computational pipelines regarding data pro-

cessing, variant calling, filtering, and quality control may strongly

influence results as shown by the different results in the MIAO-2018
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dataset. Particularly in smaller datasets such variations in one or two

patients can markedly impact significance.

Besides, the computational prediction of immunogenic antigens faces

several challenges. Several studies report that a small proportion of

their in situ predicted neoantigens were found to be immunogenic in
vitro (Bassani-Sternberg et al., 2016; Yadav et al., 2014; Zhang et al.,

2017). This divergence is impacted by biological processes that are

difficult to forecast with computational pipelines. Today’s prediction

programs focus mostly on peptide-MHC binding, while recognition of

the TCR is crucial to evict an immune response (Müller et al., 2017).

The TCR-peptide binding however is little understood and therefore

difficult to predict. Furthermore, the presentation of antigens includes

additional downstream peptide processing steps, including proteolysis,

the localization of the peptide in the endoplasmic reticulum, and the

loading onto the MHC.

Mutation instability in bladder cancer is often connected to the

APOBEC mutational signature. While in the HdM-BLCA-1 cohort,

we only saw a significant association between APOBEC and ICI re-

sponse in clonal mutations, combining several datasets showed that

responders are enriched in APOBEC-induced mutations. Again, an

increase in sample size strongly affected statistical significance.

The power of a larger sample size is further visible when analyzing the

composition of the TME and its association with treatment response.

While previous studies have repeatedly outlined the importance of T

cell infiltration as a key biomarker for ICI response (Hammerl et al.,

2021; Hernando-Calvo et al., 2023; Litchfield et al., 2020; Mariathasan

et al., 2018), we were only able to report tendencies in the HdM-

BLCA-1 cohort. In contrast, the larger number of RNA-Seq samples

obtained later allowed us to get a clearer picture of the key players. The

abundance of immune cells such as CD8+ T cells and M1 macrophages,

as well as the expression of IFN-γ and its related gene signatures, were

found to be strong predictors of ICI response in bladder cancer. In

comparison, high TGF-β values reduce treatment response as also
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reported by others. This underlies its anti-inflammatory effect, limiting

T cell proliferation while inducing EMT and Treg population. Similarly,

markers for EMT and stroma cells, indicating angiogenesis, tumor

migration, and T cell exclusion, negatively relate to ICI response.

So, in general, tumors with high levels of immune cell infiltration,

particularly of CD8+ T cells, are better positioned for immune-

mediated cancer cell detection. Interestingly, patients of the two

subtypes with the highest immune infiltration, basal-squamous and

luminal-infiltrated, do not respond better than the three non-immune-

infiltrated subtypes. Within the group of high CD8+ infiltrated pa-

tients, we found that the immune suppressive TGF-β values separate

the patients into less and more likely to respond to treatment. We hy-

pothesize that immune-infiltrate tumors do not show higher response

rates than non-immune-infiltrated tumors due to the countering of

immune-suppressive pathways, such as TGF-β, that hinder a success-

ful immune response. The non-immune-infiltrated subtypes showed

not just higher levels for markers of immune suppression, but also

an overall lower TMB, which negatively affects treatment response.

The only subtype with a significantly better response to ICI was the

rare neuronal subtype, potentially due to its particularly low levels

of TGF-β. Interestingly, the antigen-presenting machinery was lowly

expressed in the six non-responders of this group, suggesting that their

tumors show a decreased ability to present neoantigens, a critical step

for ICI efficacy.

4.2 Biomarkers driving response differ between
subgroups

Not all patients benefit from ICIs, highlighting the need to identify

robust biomarkers and understand the mechanisms driving treatment

response and resistance. And even though scientists have made a

great effort to characterize each of these mechanisms and find strong

biomarkers, predicting response to immunotherapy is still a riddle to

be solved. Recent breakthroughs in omics technologies opened new
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opportunities for biomedical research. Advancements in genomics,

transcriptomics, proteomics, and metabolomics facilitate the explo-

ration of biological systems with unparalleled precision and depth.

The growth in high-dimensional biological data, coupled with the

rapid expansion of computational resources, has paved the way for

the development and application of computational models, offering

powerful tools to interpret and unravel the complexities of biological

systems.

In the cohort presented in the first publication of this thesis, we found

clonal TMB to be a better separator of response groups than general

non-synonymous TMB. This was not the case when several cohorts

were combined in the second results section. Examples like this can

be found all over the literature where observations hold true in one

but not another cohort. The heterogeneity of tumor patients asks for a

multi-factorial approach. Previous work has suggested that immune-

infiltrated patients not only respond better but can also balance out a

low TMB. We have seen that subtypes with high immune infiltration do

not respond better by default, hypothesizing that this might be due to

the immune-suppressive effects of pathways such as TGF-beta. In this

work, we find that different molecular subtypes of advanced bladder

cancer have distinct predictive markers for response that represent a

combination of known biomarkers.

We selected the features for the prediction model based on the previous

analysis. These covered mutation-based variables (TMB, non-stop

mutations, APOBEC-enrichment score), a signature of tumor-specific

lncRNAs, gene expression of selected genes (PD-1, PD-L1, CCND1),

immune signatures (IFN-γ, stroma/EMT, inflamed T cells, TGF-β and

antigen-presenting machinery pathways), immune cell abundance

(M1 macrophages, CD4 memory activated T cells, CD8 T cells and

regulatory T cells), and clinical information (ECOG, liver metastasis).

The random forest model built with the full set of features reached

an Area under the curve (AUC) of 0.761. In comparison, a random

forest model using only TMB was much less accurate in response
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prediction (AUC=0.678). Applying the 10 mutations/Mb threshold

approved by the FDA for solid tumors, achieved an even lower accuracy

(AUC=0.61), showing that considering markers of different biological

processes adds to the prediction of ICI response. For a portion of the

patients, only a TMB estimate and no further mutation-based data was

available. In a clinical setting, running WES and RNA sequencing is

cost- and time-intensive. We have therefore built a model using only

the features based on RNA-Seq data together with the TMB, reaching a

similar AUC as when using all features (AUC=0.747), but being more

robust as it was built on a bigger sample size. This is also reflected in

the high response prediction accuracy when validated on an external

cohort (AUC=0.764).

Remarkably, a model built using only high immune-infiltrated tumor

patients (Basal-squamous and luminal-infiltrated subtypes) showed the

highest accuracy (AUC=0.761), while the selected features showed

only a modest ability to predict ICI response in the non-immune-

infiltrated group. This lets us to conclude that drivers of ICI treatment

response in immune-infiltrated tumors are much better understood

than those of the other subtypes. We have therefore focussed on the

non-immune-infiltrated subtypes separately and built a random forest

model on the biggest subtype, luminal-papillary, and decision trees for

the two smaller subtypes luminal and neuronal. In the luminal subtype,

we found that besides TMB and M1 macrophage infiltration, either

high expression of PD-1 or low stroma/EMT values were characteristic

for treatment responders. In the luminal subtype, we found most

non-responders to have high infiltration levels of regulatory T cells.

Finally, in the decision tree of patients with the neuronal subtype,

the most important feature separating response was the expression of

antigen-presenting machinery genes, as discussed above.

Future research and clinical study designs should consider the different

subtypes and their immune-infiltration status and prioritize unraveling

the mechanisms driving response in non-immune-infiltrated tumors. A

better understanding of the differences driving response in this group
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of patients could be key to improving patient health, for example by

combining immunotherapy with therapeutic interventions increasing

local immune invasion. Potential drug candidates could be CD8+ T

cell recruiting cytokine signals, such as seasonal flu vaccines (Newman

et al., 2020), the CDK4/6 inhibitor abemaciclib (Zhang et al., 2020),

or COX inhibitors (Bronger et al., 2012).

4.3 Stop codons impact cancer

In recent years, the outlook for novel sources of tumor-specific neoanti-

gens has become a major focus in cancer research, aiming to develop

targeted therapies in immunotherapy and cancer vaccines. While mis-

sense mutations have been the most extensively studied, frameshift

mutations have also been proposed as contributors to immunogenic

neoantigens (Linnebacher et al., 2001; Turajlic et al., 2017). Addition-

ally, recent efforts are directed toward exploring the ‘dark‘ genome,

investigating elements such as non-coding regions, transposable ele-

ments, or unannotated ORFs to uncover additional targets (Camarena

et al., 2024). A mutation type that has received little attention is the

stop-loss mutation, leading to an extension of the peptide sequence

into the non-coding genome. In the second part of this study, we ob-

served that the group of ICI therapy responders showed a significantly

larger number of stop-loss mutations than the group of non-responders.

We hypothesize that the peptide extensions derived from stop-loss

mutations give rise to immunogenic neoantigens in the tumor cells.

Compared to other non-synonymous mutations, the effect of stop-loss

mutations on the affected gene is little understood. While many tools

exist to predict variant effects, the impact of stop-loss mutations is

more complex due to the potential effect of the C-terminal extension

on the protein’s functionality, highlighting the need for an in-depth

characterization of this mutation type.

Stop-loss mutations comprise around 0.2% of mutations (Nehrt et al.,

2012). To study their effect on cancer, we combined mutation

data from 12,224 patients of 32 different cancer types, generating
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a database of over 2000 stop-loss mutations. Most stop-loss mutations

were found in cancers of the genitourinary, respiratory, and diges-

tive systems. While little is understood about the effect of stop-loss

mutations in cancer, we found almost 10% of the genes to be recur-

rently mutated, suggesting a biological relevance. We also found that

oncogenes showed an enrichment of stop-loss mutations compared to

missense mutations. PTMA stands out with 14 patients carrying the

same T>C mutation, half in testicular cancer. The encoded protein,

prothymosin alpha, has been described to have proliferating activities

and is strongly expressed in many cancer tissues (Enkemann et al.,

2000; Jiang et al., 2003; Malicet et al., 2006). While the mutation did

not affect the expression in patients with available expression data, we

found a strong overexpression of PTMA in tumor tissue. This included

testicular cancer, which was recurrently PTMA stop-loss mutated.

In general, we found that stop-loss mutations are overrepresented in

oncogenes and cancer-related genes over missense mutations, sug-

gesting a positive effect of stop-loss on the activity of the gene. In

comparison, a recent study on another database of stop-loss muta-

tions (NonStopDB, Dhamija et al. (2020)) reports that when tested

experimentally, around half of the extensions derived from stop-loss

mutations reduced the protein abundance (Ghosh et al., 2024). Fo-

cussing on three tumor suppressor genes, SMAD4, PTEN, VHL, and

BAP1, they found that the C-terminal extensions cause protein loss,

either by degradation or, in the latter case, by translation inhibition of

the mRNA (Dhamija et al., 2020; Pal et al., 2025).

Our database offers a complementary perspective on stop-loss muta-

tions. The NonStopDB was built on the Catalogue of Somatic Mutations

in Cancer (COSMIC) data, version 78 (Forbes et al., 2016). Similarly

to our database, this incorporates individual studies (60%) and a

subset of the International Cancer Genome Consortium (ICGC) and

TCGA (40%). This database includes 3,412 unique stop-loss mutations.

However, the distribution of stop-loss mutations differs significantly

between the two databases. While NonStopDB reports the highest
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prevalence in digestive system tumors, our database finds the most

frequent mutations in uterine cancer. The variations in mutation occur-

rence arise from differing cohort compositions. The unbiased nature of

the data we analyzed, covering all possible stop-loss mutations in the

genome, allowed us to identify an enrichment of this mutation type,

both in tumor suppressor genes and oncogenes. In addition, the latter

group showed an excess of stop-loss mutations versus missense muta-

tions, suggesting that the first type of mutations might have a role in

increasing oncogenicity. We have further computed potential peptide

sequence extensions derived from stop-loss mutations. We found the

average length of stop-loss extension to be comparatively short with

16 amino acids. The value is lower than the average length published

based on a bioinformatics analysis (27.8 amino acids (Shibata et al.,

2015)), but very similar to the prediction on the NonStopDB (18 amino

acids (Dhamija et al., 2020)). Both we and Dhamija et al. predicted

extensions based on mutations found in tumors, while Shibata et al.
used all potential protein extensions. The difference in average length

could indicate a specific selection in cancerous tissues. Further analysis

comparing the structural and functional impact of these extensions

may provide insights into their biological significance and potential

role in tumorigenesis.

4.4 The limits of current models and future
directions

Since their first approval in 2014, there has been a race for pub-

lishing the most accurate prediction model for ICI response. Many

models have been published, some relying on a single data source, oth-

ers integrating multiple sources, big pan-cancer studies, and smaller

cancer-specific models. A fundamental challenge in predictive model-

ing remains the right trade-off between simplicity and complexity. The

two markers approved by the FDA, high TMB and PD-L1 expression,

provide a convenient way to stratify patients but fail to account for

the full spectrum of immune interactions that dictate response. Even
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measuring a seemingly simple biomarker such as TMB can become

complex, as highlighted by the attempts of multi-institutional collabo-

ration to harmonize the variability in how TMB is analyzed and applied

in the clinical setting (of Cancer Research, 2025).

A recent pan-cancer model using blood tests from over 9,000 patients

shows promising results in predicting over-survival to ICI surpassing

results obtained with TMB or PD-L1 staining (Yoo et al., 2025). Other

research groups published gene signatures trying to separate patients

by response based on the mRNA levels of a set of genes (Benguigui

et al., 2024; Hernando-Calvo et al., 2023). More complex, multi-

omics approaches incorporating genomic, transcriptomic, and immune

profiling data offer a more comprehensive view of tumor-immune

dynamics. However, the more complex a model becomes, the less

practical it may be for clinical translation. Our work aligns with the

latter approach—not as a clinical tool but as a means to deepen our

understanding of the intricate mechanisms governing immunotherapy

response.

One of the greatest obstacles in prediction is the variability of features

among patients but also within the same patient over time. Many

published prediction models achieve high accuracy in their training

and testing cohorts but fail to present an equally high AUC in inde-

pendent validation cohorts (Damrauer et al., 2022; Litchfield et al.,

2021). This discrepancy can result from overfitting but also be strongly

affected by different methods to obtain patient samples. Studies have

demonstrated that the same patient can exhibit significant differences

in immune composition between primary and metastatic lesions. The

immunopeptidome repertoire, for example, varies between tumor

regions within the same individual (Kraemer et al., 2023).

Beyond the complexity of biological variables, there is the epistemo-

logical question of how we define response. Immunotherapy response

is not a static characteristic but a dynamic process. While a universal

standard is lacking, the field roughly separates into two approaches.

The time-to-event metrics, such as progression-free and overall sur-
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vival (Damrauer et al., 2022; Nassar et al., 2020; Powles et al., 2020;

Rizvi et al., 2015; Rose et al., 2021; Samstein et al., 2019), and re-

sponse rate classification based on Response evaluation criteria in

solid tumors (RECIST) criteria, patients are separated by the tumor

lesion growth into complete responders, partial responders, stable

disease, and progressive disease (Benguigui et al., 2024; Eroglu et al.,

2018; Hellmann et al., 2018; Mariathasan et al., 2018; Robertson

et al., 2023; Snyder et al., 2017; Van Allen et al., 2015; Zhang et al.,

2022). Both approaches pose their difficulties. While the discussion

around progression-free survival as a surrogate for overall survival and

a marker for quality of life is ongoing (Booth and Eisenhauer, 2012),

the matter is just as unclear for the RECIST categories, due to the

ambiguity of the classification of stable disease cases. Again, different

groups took different approaches, in some cases no response includes

cases in which the tumor is stable, whereas in others it only refers to

cases in which there is growth of tumor lesions. Decisions like this one

can strongly impact the results of a study, affecting which features a

model will prompt as most associated with response and changing the

AUC. In this thesis, we excluded patients with stable disease response

status. Even though a lower sample size would affect the predictive

power of our analysis, we believed we would obtain more meaningful

results by reducing potential noise with a clearer separation of the two

response groups.

Finally, despite integrating diverse datasets encompassing clinical, ex-

pression, and mutation data, even today’s most sophisticated models

struggle to predict response to ICIs robustly. This suggests that the

existing variables may capture only a fraction of the intricate factors

governing immunotherapy response and that others, yet unseen, vari-

ables play a crucial role. Research has, for example, shown that the

gut microbiome influences immune activation and potentially impacts

patient response to ICIs (Chaput et al., 2017; Viaud et al., 2013; Véti-

zou et al., 2015). Other factors such as epigenetics, metagenomics and

more detailed clinical metadata on lifestyle factors may add to build

better predictive frameworks. Nevertheless, it is unlikely that a single
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model will ever fully predict therapy response. Instead, the future

may lie in developing personalized, adaptive models incorporating

real-time patient data.

Decoding ICI response is not just a technical challenge, but a reflec-

tion of our evolving understanding of tumor-immune dynamics. By

achieving the objectives outlined in this thesis, we provide novel in-

sights into the underlying mechanisms of ICI response, particularly in

bladder cancer. This also opened new questions, such as the driving

factors for response in the non-immune-infiltrated subtypes in bladder

cancer or the potential of stop-loss-derived neoantigens as treatment

therapies. Each step forward refines the ground of knowledge on the

hide-and-seek between tumor and immune system and paves the path

for a future where precision medicine can deliver truly personalized

therapies.
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5CONCLUSIONS

1. High TMB correlates with better ICI response, as it increases the

likelihood of neoantigen presentation. Clonal TMB appears to be a

stronger predictor of response in the HdM-BLCA-1 dataset. How-

ever, we did not observe this effect in the meta-analysis, highlighting

the importance of large, balanced datasets.

2. We report that while immune cell infiltration, particularly of CD8+

T cells, and M1 macrophages, is associated with improved response

to ICIs, high immune infiltration does not always predict better

outcomes, as immune-suppressive factors like TGF-β can counteract

the benefits of immune activation.

3. Different bladder cancer subtypes show varying responses to ICIs,

with the neuronal subtype displaying the highest response rate,

possibly due to low TGF-β levels.

4. The use of a large amount of clinical samples allowed us to uncover

the main biomarkers in non-immune infiltrated subtypes, such as

the antigen presenting machinery in the neuronal subtype.

5. We combined data from over 12,000 patients identifying a signifi-

cant enrichment of stop-loss mutations in oncogenes and cancer-

related genes, suggesting that they can enhance oncogenic activity

in certain cases.

6. Our analysis of immunopeptidomics data suggests that stop-loss mu-

tation could be a source of tumor-specific antigens, to be exploited

for immunotherapy and cancer-vaccine therapies.
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Figure S1. Pairwise nucleotide substitution patterns in the urothelial cancer cohort of the Cancer Genome 
Atlas (TCGA). The frequency of transitions (Ti) and transversions (Tv) is also shown. The number of samples is 
411.  

 



 

 
 

Figure S2. Relationship between APOBEC mutations and response to treatment. a. APOBEC enrichment in 
clonal mutations. There is a significant positive relationship between response to treatment and the APOBEC 
enrichment in clonal mutations (p-value = 0.03, Wilcoxon rank sum test). b. APOBEC enrichment in all 
mutations. The differences between responders and non-responders are not statistically significant. NR: no 
responders, R: responders, triangle shape represents the complete responders among the responder group. 



 
 
Figure S3. Relationship between TMB and the three different response groups to ICI therapy. a. Relationship 
between TMB and response to ICI treatment. The differences in TMB values between the three response 
groups were not significant. b. Relationship between clonalTMB and response to ICI treatment. The clonal 
TMB for partial responders is significantly higher compared to non-responders (p-value = 0.026). The 
differences in clonal TMB between non-responders and complete responders and partial responders compared 
to complete responders did not reach statistical significance. c. Relationship between subclonal TMB and 
response to ICI treatment. The differences in subclonal TMB values between the three response groups were 
not significant.  NR: no responders, PR: partial responders, CR: complete responders.  

 



 
 

Figure S4. Relationship between ICI treatment response and the number of putative binders predicted with 
NetMHCpan 4.0. The number of predicted binders tends to be higher in responders than in non-responders. 
a-c: Number of putative binders with predicted affinity rank < 0.5%. d-f: Number of putative binders with 
predicted affinity IC50 < 500nM. g-i: Number of putative binders with predicted affinity IC50 < 50nM. P-values 
were calculated using the Wilcoxon rank sum test. NR: no responders, R: responders, triangle shape represents 
the complete responders among the responder group.  

 



 
 
Figure S5. Relationship between ICI treatment response and the number of putative binders predicted with 
MHCflurry 2.0. The number of putative binders tends to be higher in responders than non-responders. a-c: 
Number of putative binders with predicted affinity rank < 2%. d-f: Number of putative binders with predicted 
affinity rank < 0.5%. g-i: Number of putative binders with predicted affinity IC50 < 500nM. j-l: Number of 
putative binders with predicted affinity IC50 < 50nM. P-values were calculated using the Wilcoxon rank sum test. 
NR: no responders, R: responders, triangle shape represents the complete responders among the responder 
group.  



 

 
 
Figure S6. a. Relationship of differential agretopicity index (DAI) and treatment response. No significant 
difference in highly differential peptides (DAI>9) was seen between response groups. b. Relationship between 
the number of predicted stable binders and treatment response. No significant difference in the number of 
putative stable binders (binding stability<1.4h) was seen between response groups. P-values were calculated 
using Wilcoxon rank sum test. NR: no responders, R: responders, triangle shape represents the complete 
responders among the responder group. 
 
 

 



 

 
 
Figure S7. Non-synonymous mutations affect the binding affinity of the peptide. a. Formation of new MHC I 
binders. Enrichment for different amino acid substitutions (above) or positions in the peptide (below) are 
measured as the log2 ratio of the substitution frequency in the set of new binders versus the frequency in the 
set of peptides that do not change binding status. Enriched amino acids using a chi-square test: tyrosine (Y), 
phenylalanine (F), leucine (L) and histidine (H) at p-value < 10-5, tryptophan (W) at p-value = 0.002872. b. Loss 
of MHC I binding capacity. Enrichment for different amino acid substitutions (above) or positions in the 
peptide (below) are measured as the log2 ratio of the substitution frequency in the set of peptides associated 
with loss of MHC I binding versus the frequency in the set of peptides that do not change their binding status. 
Enriched amino acids using a chi-square test: cysteine (C) (p-value < 10-5), glycine (G) (p-value =6.55x10-5). 



 
 
Figure S8. Relationship of number of predicted new binders and treatment response. a. Binders derived from 
total mutations. Responders have a higher number of new putative binders than non-responders (Wilcoxon 
test, p-value = 0.05). b. Binders derived from clonal mutations. Number of putative binders originating from 
clonal mutations is significantly higher in responders than non-responders (Wilcoxon test, p-value = 0.016). c. 
Binders derived from subclonal mutations. No significant difference can be observed for the number of 
putative binders originating from subclonal mutations between responders and non-responders. NR: no 
responders, R: responders, triangle shape represents the complete responders among the responder group.



 
Figure S9. Relation between tumor-infiltrating estimated immune cells abundances and immune biomarkers 
and treatment response. Boxplots comparing a. abundance of immune cells and treatment response and b.  
expression of different immune-related genes (log2CPM) and signatures (GSVA scores). Immune cell infiltration 
was estimated with CIBERSORT using gene expression profiles. P-values were calculated using Wilcoxon rank 
sum test. Details on immune biomarkers and immune cell profiles can be found in the supplementary data file 
2. NR: no responders, R: responders triangle shape represents the complete responders among the responder 
group.  



 
Figure S10. Pathways of gene set enrichment analysis significantly related to ICI response (adjusted P < 0.05, 
comparing 13 responders and 7 non-responders). Selected pathways are shown. The complete list of pathways 
with their adjusted p-value, normalized enrichment score and the included genes is provided in the Additional 
data file 3.  



 
 
 
Figure S11. Network of significantly enriched pathways. Enrichment map of GSEA results (adjusted p-value < 
0.05) comparing a. responders versus non-responders and b. complete responders versus partial-responders. 
Nodes represent genesets and edges represent the connectivity between genesets (combined metric 
Jaccard+Overlap >0.375). Red and blue represent positive and negative enrichment scores, respectively.



 
 
Figure S12. Quality control of RNASeq data. a. PCA using the top 500 most variable genes. b. Dendrogram 
using the top 500 most variable genes, 1-correlation distance and Ward2 linkage method. R16 was detected as 
an outlier. No batch effect was present.  
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Figure 
S13. 

Differentially expressed genes. Volcano plots showing the results of the contrasts: a. responders vs 
non-responders. b. complete responders vs partial responders. The thresholds used in the plots are P.Value < 
0.01 and |logFC|>1 
 
 



5.2 Supplementary Material for Results 3.2

Supplementary figures and tables for the publication titled ’Predicting

immunotherapy response of advanced bladder cancer through a meta-

analysis of six independent cohorts’, presented in section 3.2.
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Sup. Table 1. Clinical and demographic information by ICI response groups (N=466). Table of all 
patients with response status complete or partial response (R) or non-response (NR). Table 
generated with compareGroups R package using the default tests (t-test and ANOVA for continuous 
normal-distributed, X2-test for categorical variables, pairwise comparisons for more than 2 groups of 
continuous variables with Pearson test and for categorical with Mantel-Haenszel test, in both cases 
applying the Turkey method to adjust for multiple testing). 
 

 NR 
N=303 

R 
N=163 

p.overall 

RECIST:   6.4e-102 
Complete Response - 56 (34.4%)  
Partial Response - 107 (65.6%)  
Progressive Disease 303 (100%) -  

Sex:   0.196 
Female 73 (24.1%) 30 (18.4%)  
Male 230 (75.9%) 133 (81.6%)  

ECOG 0.80 (0.72) 0.66 (0.77) 0.060 
ECOG ≥ 1:   0.006 

No 186 (66.0%) 75 (51.7%)  
Yes 96 (34.0%) 70 (48.3%)  

Age 65.6 (10.6) 67.1 (10.3) 0.319 
Race   0.504 

Asian 0 (0.00%) 1 (1.85%)  
Black or African American 4 (4.35%) 2 (3.70%)  
White 79 (85.9%) 49 (90.7%)  

Smoker:   0.143 
No 86 (30.4%) 31 (23.0%)  
Yes 197 (69.6%) 104 (77.0%)  

Alive:   2.2e-10 
No 92 (76.0%) 23 (29.5%)  
Yes 29 (24.0%) 55 (70.5%)  

OS 119 (384) 269 (455) 4.7e-04 
Liver metastasis:   0.008 

No 165 (66.8%) 79 (85.9%)  
Yes 82 (33.2%) 13 (14.1%)  

ICI Drug:   0.043 
Anti-CTLA-4 + anti-PD-1/PD-L1 0 (0.00%) 1 (0.83%)  
Anti-PD-1/anti-PD-L1 10 (3.79%) 12 (9.92%)  
Atezolizumab 202 (76.5%) 88 (72.7%)  
Avelumab 2 (0.76%) 3 (2.48%)  
Durvalumab 4 (1.52%) 1 (0.83%)  
Nivolumab 5 (1.89%) 0 (0.00%)  
Pembrolizumab 41 (15.5%) 16 (13.2%)  

 
 
 

 



Sup. Table 2. Abundance of different types of non-synonymous mutations. WES data from the 
tumors of 318 patients  was obtained using the same pipeline. The cohorts were IMvigor210, 
MIAO-2018, HdM-BLCA-1 and SNY-2017. R: responder; NR: non-responder. 
 
 

Mutation classification Total 
 (N=318) 

R  
(N=89) 

NR  
(N=144) 

Frameshift deletion 1373 673 34 

Frameshift insertion 507 197 178 

In-frame deletion 277 123 93 

In-frame insertion 19 3 13 

Missense mutation 55652 24423 18006 

Nonsense mutation 5179 2225 1696 

Non-stop mutation 85 40 28 

Splice site 1102 428 414 

Translation start site 81 35 27 

Total 64275 28147 20849 

Mean number of mutations 202 316 144 

 
 
 

 



Sup. Table 3. Most frequently mutated genes with the number of non-synonymous mutations 
combined for the four WES cohorts (IMvigor210, MIAO-2018, HdM-BLCA-1 and SNY-2017). Genes 
are sorted from most to fewest mutations found for the gene, only showing genes with more than 24 
somatic mutations. 

 
 

TTN TP53 KMT2D MUC16 ARID1A MACF1 ELF3 KDM6A FGFR3 SYNE1 CCDC168 DST 

254 139 114 95 86 71 67 59 58 57 56 54 

PLEC FAT1 KMT2C RNF213 FAT4 HMCN1 OBSCN XIRP2 RB1 ABCA13 ERBB3 PIK3CA 

52 50 50 50 49 49 48 46 44 43 43 43 

ZFHX4 CSMD3 MUC4 PCLO CHD9 RYR2 CREBBP FSIP2 KMT2A PKHD1L1 EP300 SPTAN1 

43 42 42 42 41 41 40 40 40 40 39 39 

ZFP36L1 ADGRV1 LRP1B RYR3 USH2A HERC1 ANK2 ATM DNAH11 MKI67 AHNAK DNAH5 

39 38 38 37 37 36 34 34 34 34 33 33 

KIAA1109 APOB DNAH17 ERBB2 FBN2 MYH9 SPEN SYNE2 UBR4 ANKRD11 MYCBP2 SPTA1 

33 32 32 32 32 32 32 32 32 31 31 31 

TSC1 CEP350 FLG RYR1 AKAP9 BIRC6 LRP2 PRKDC PTPN13 ANKRD17 CMYA5 CSMD1 

31 30 30 30 29 29 29 29 29 28 28 28 

DNAH6 DNAH8 PCNT PKHD1 SACS ALMS1 APC ATR CDKN1A CEP192 DNAH9 FAM186A 

28 28 28 28 28 27 27 27 27 27 27 27 

FAT3 LAMA5 NIPBL TPR CDH23 DCHS2 DIDO1 DNAH10 DYNC2H1 KMT2B NEB NRXN1 

27 27 27 27 26 26 26 26 26 26 26 26 

SMARCA4 ANK3 COL6A3 LRRK2 MUC3A NBEAL1 PCDH17 PDZD2 SRCAP    

26 25 25 25 25 25 25 25 25    

 
 
 
 
​
 

 



Sup. Table 4. AUC values for different random forest models. Baseline model corresponds to using 
only the variable TMB. Complete model is obtained with 17 variables, including mutation, gene 
expression and clinical variables. TMB + RNA model includes TMB and gene expression variables. The 
area under the curve (AUC) is the average of 1000 runs. Data is shown for the split-sample method 
and the internal bootstrapping method.​
 

Model Split-sample 
AUC 

Bootstrap .632+ 
AUC 

Baseline model, complete data 0.678 0.711 

Baseline model, immune-infiltrated data 0.704 0.737 

Baseline model, not-immune-infiltrated data 0.652 0.664 

Complete model, complete data 0.761 0.789 

Complete model, immune-infiltrated data 0.793 0.817 

Complete model, not-immune-infiltrated data 0.639 0.646 

TMB + RNA model, complete data 0.747 0.773 

TMB + RNA model, immune-infiltrated data 0.769 0.792 

TMB + RNA model, not-immune-infiltrated data 0.647 0.643 

 

 
 



 

Sup. Table 5. Random forest models to predict response to ICI in different bladder cancer subtypes. 
The variables selected were TMB z-score, clinical variables (ECOG, liver metastasis) and 
RNA-Seq-derived variables.  

 

Luminal Papillary 
N=71; AUC (train/test) = 0.6544 

Luminal Infiltrated 
N=138; AUC(train/test) = 0.8022 

Basal squamous 
N=91; AUC (train/test) = 0.8223 

Macrophages M1: 0.109 
TMB_zscore: 0.106 
PD1.zscore: 0.093 
IFNg_Ayers.GSVA: 0.074 
T cells CD8: 0.069 
CCND1: 0.066 
Stroma_EMT.GSVA: 0.063 
PDL1.zscore: 0.059 
APM_8.GSVA: 0.058 
TGF_beta.GSVA: 0.049 
T cells CD4 memory activated: 0.048 
HLA-I.GSVA: 0.047 
T_cell_inflamed.GSVA: 0.044 
T cells regulatory (Tregs): 0.042 
t.spec.lncRNA.GSVA: 0.038 
ECOG_over0_Y: 0.017 
Liver.Metastasis_Y: 0.017 

TMB_zscore: 0.169 
Macrophages M1: 0.13 
IFNg_Ayers.GSVA: 0.086 
T_cell_inflamed.GSVA: 0.066 
t.spec.lncRNA.GSVA: 0.063 
TGF_beta.GSVA: 0.062 
Stroma_EMT.GSVA: 0.06 
APM_8.GSVA: 0.058 
HLA-I.GSVA: 0.05 
CCND1: 0.048 
PDL1.zscore: 0.046 
PD1.zscore: 0.044 
T cells CD4 memory activated: 0.042 
T cells CD8: 0.037 
T cells regulatory (Tregs): 0.022 
ECOG_over0_Y: 0.009 
Liver.Metastasis_Y: 0.007 

TMB_zscore: 0.146 
Macrophages M1: 0.085 
PD1.zscore: 0.084 
IFNg_Ayers.GSVA: 0.083 
HLA-I.GSVA: 0.08 
CCND1: 0.075 
APM_8.GSVA: 0.064 
T cells CD8: 0.063 
T cells regulatory (Tregs): 0.059 
PDL1.zscore: 0.053 
t.spec.lncRNA.GSVA: 0.041 
Stroma_EMT.GSVA: 0.04 
TGF_beta.GSVA: 0.04 
T_cell_inflamed.GSVA: 0.036 
T cells CD4 memory activated: 0.032 
Liver.Metastasis_Y: 0.011 
ECOG_over0_Y: 0.008 

 

 

 
 

 



 
 
Sup. Figure 1. Extended list of mutation-based variables. A. Responders have a higher number of 
mutations annotated as HIGH impact (two-sided, two-sample Wilcoxon test p-value=1.8e-079. B. 
Similarly the number of MODERATE impact mutations is also significantly higher in responders than 
in non-responders (two-sided, two-sample Wilcoxon test). C. The number of putative neoantigens 
resulting from frameshift insertions and deletions (fsINDELs) is not significantly different between 
responders and non-responders (two-sided, two-sample Wilcoxon test). D. The number of putative 
neoantigens resulting from nonstop mutations was not found to be significantly associated with 
response (two-sided, two-sample Wilcoxon test). Mutation impact was obtained from ENSEMBL vep 
annotation (version 104). Putative binding peptides were predicted by applying a threshold of 
500nM IC50 binding affinity in NetMHCpan 4.0. N=236 patients. R: responders (yellow), NR: 
non-responders (turquoise). All p-values are indicated in the according plots. Source data is provided 
as a Source Data file. 
 

 



 
Sup. Figure 2. Extended list of markers of immune activity in the tumor microenvironment. A. 
Responders have higher gene expression of chemokines and CD8A compared to non-responders 
(two-sided, two-sample Wilcoxon test). B. Although responders do not show a higher general 
immune cell infiltration following the CIBERSORT absolute score, they have higher infiltration of cells 
related to an anti-tumor response by the immune system (two-sided, two-sample Wilcoxon test 
p-value=0.13). C. Responders are enriched in three out of four CD8 T cell signatures (two-sided, 
two-sample Wilcoxon test p-value=0.0054). D. Responders are enriched in IFN-gamma gene 
signatures (two-sided, two-sample Wilcoxon test). E. Responders are enriched in genes related to the 
antigen-presenting machinery (two-sided, two-sample Wilcoxon test). F. High correlation between 
signatures of immune activation and HLA-II expression (two-sided, two-sample Wilcoxon test). N=420 
patients. R: responders (yellow), NR: non-responders (turquoise). All p-values are indicated in the 
according plots. Source data are provided as a Source Data file. 
 

 



 

 

Sup. Figure 3. Workflow overview of the identification of a tumor-restricted lncRNA gene 
signature. Designed approach to detect tumor-restricted long non-coding RNAs and processed 
pseudogenes, collectively named lncRNAs. Cohorts were treated independently.  



 
Sup. Figure 4. Tumor-specific long non-coding RNAs gene signature. GSVA signature score based on 
tumor-specific lncRNAs with immunopeptidomics evidence per dataset (two-sided, two-sample 
Wilcoxon test: HdM-BLCA-1 p-value=0.101, IMvigor210 p-value=0.029, SNZ-2017 p-value=0.958, 
UC-GENOME p-value=0.737, UNC-108 p-value=0.546). N=420 patients.  R: responders (yellow), NR: 
non-responders (turquoise). All p-values are indicated in the according plots. Source data are 
provided as a Source Data file. 



 
 

Sup. Figure 5. Principal component analysis of mutation and expression variables (N=205 patients). 

Patients, colored by response, are represented by the smaller points in the plot, while variables are 

represented as vectors. The orientation and length of the vectors denote the relationship between 

variables and observations. Variables closer together in the biplot indicate higher correlation. 

 
 
 
 
 
 



 
 
Sup. Figure 6. Extended list of immune biomarkers in the five different TCGA subtypes. A. Tumors 
of the basal-squamous subtype have the highest values of gene signatures related to immune 
activation as well as pathways of immune evasion such as Stroma/EMT (Kruskal-Wallis test). B. 
Basal-squamous is found to have the highest infiltration of CD8 T cells and M1 macrophages 
(Kruskal-Wallis test). C. Basal-squamous has the highest CXCL9 expression. Luminal-papillary has the 
highest mean of CCND1 expression (Kruskal-Wallis test). N=420 patients. Ba/Sq: Basal-squamous 
(yellow), LumInf: Luminal-infiltrated (orange), LumP: Luminal-papillary (green), Lum: Luminal (dark 
blue), NE: Neuronal (light blue).  All p-values are indicated in the according plots. Source data are 
provided as a Source Data file. 
 
 
 
 



  



Sup. Figure 7. Extended list of immune biomarkers in the immune-infiltrated and non-infiltrated 
subtypes. A. Responders of the immune-infiltrated subtype have a higher mean expression of TGFB1 
than non-responders. No difference was observed for the not-infiltrated subtype (two-sided, 
two-sample Wilcoxon test). B. Data for gene signatures (two-sided, two-sample Wilcoxon test). C. 
Data for immune cell deconvolution analysis (two-sided, two-sample Wilcoxon test). A full list of the 
included genes and sources for the gene signatures is provided in supplementary file 2. D. 
Relationship between TMB and immune-related variables, in immune-infiltrated subtypes (red) and 
non-immune-infiltrated subtypes (blue), responders are marked with circles, non-responders with 
filled circles. N=420 patients. R: responders (yellow), NR: non-responders (turquoise). All p-values are 
indicated in the according plots. Source data are provided as a Source Data file. 

 



  
Sup. Figure 8. Extended list of mutational and immune biomarkers in responders and 
non-responders by TCGA subtypes. A. Relationship between TMB and subtype/response. B. 
Relationship between APOBEC enrichment and subtype/response. C. Relationship between immune 
cells and subtype/response. D. Relationship between immune activation and suppression signatures 
and subtype/response. E. Relationship between antigen presenting machinery (APM) pathway and 
subtype/response F. Relationship between the tumor specific lncRNA signature and 
subtype/response. G. Relationship between TGFB1 gene expression and subtype/response. N=420 
patients. P-values obtained by two-sample Wilcoxon test ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: 
p <= 0.001. R: responders (yellow), NR: non-responders (turquoise). All p-values are indicated in the 
according plots. Source data are provided as a Source Data file. 
 



 
 
Sup Figure 9. Relationship between CD8 T cell and TGF- gene expression in immune-infiltrated 
subtypes. Relationship between CD8 T cell and TGF-β gene expression by the immune-infiltrated 
TCGA subtypes basal-squamous (A) and luminal-infiltrated (B). Immune-infiltrated samples tend to 
have high CD8+ T cell abundance, and in many cases also high levels of the TGF-β signature. Dashed 
line marks the optimal cutoff for each gene signature obtained by ROC (TGF-β: 0.0163; CD8 t effector 
cells: 0.246). N=420 patients. R: responders (yellow), NR: non-responders (turquoise).  



 
  

 
 

Sup. Figure 10. Feature importance of all variables in the final model. The data is shown for 
immune-infiltrated subtypes (N=137) and not-immune infiltrated subtypes (N=68). Bars are colored 
according to their association with therapy response (green: higher in responders; red: higher in 
non-responders). Source data are provided as a Source Data file. 
 

 



 
 
Sup. Figure 11. Performance of the prediction model when undersampling. The models were built 
with an equal number of responder and non-responders to assess performance without group 
imbalance. (A) Shows results for the Complete model and (B) reports the results for the TMB + RNA 
Model (TMB z-score and RNA-Seq-derived variables).  



A. 
Decision tree luminal papillary subtype  

 
 
B. 

Decision tree luminal subtype  

  
 
 
Sup. Figure 12. Decision trees of non-immune-infiltrated subtypes. Decision trees are created to 
better understand which features drive R/NR in our data stratifying by luminal-papillary (A) and 
luminal (B) TCGA Subtypes. The variables considered were TMB z-score and RNA-Seq-derived 
variables. The number of samples was 71 for luminal papillary and 35 for luminal. Number of leaves 
was set to 10. 
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Sup. Figure 13. Heatmap of selected immune activation and suppression markers by non-immune 
infiltrated subtypes for luminal-papillary (A) and luminal (B). The five immune markers are taken 
from the decision trees in Sup. Figure 9. 
 
 
 
 



A. ​ B.  

C.    ​ D.  

E.  F.  

 

Sup. Figure 14. Quality control of normal and tumor whole exome sequencing (WES) samples. A. 

Coverage depth of germline WES samples. Samples from HdM-BLCA-1 were covered with a higher 

depth compared to the other three datasets. B. Coverage depth of WES from tumor samples. 

Samples of IMvigor210 have the highest coverage. C. Scatterplot showing the correlation between 

tumor mutational burden and tumor sample depth. Samples with a coverage > 20X are marked in 

black. As they don’t fall into the 5% of samples with lowest mutation burden, they were not excluded 

in the analysis. D. Patients with a normal sample of low coverage don’t show an unexpectedly high 

mutational burden and were therefore not excluded from the analysis. E. Purity estimates of tumor 

samples obtained from WES data using ASCAT. F. Correlation between WES tumor sample purity and 

deconvolution value obtained from CIBERSORT using tumor RNA-Seq data. Responders are marked 

with triangles, non-responders with circles. 

 



A.  
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Sup. Figure 15. Normalization of TMB values. A. Distribution of TMB in the different datasets 

compared to other TCGA cohorts. The four datasets with WES data (IMvigor210, SNY-2017, 

MIAO-2018 and HdM-BLCA-1) show a similar number of mutations as the TCGA bladder cancer 

cohort (BLCA). The two datasets with panel DNA (UC-GENOME and UNC-108) show overall higher 

TMB estimates. B. TMB values sorted descendingly and coloured by dataset (Kruskal-Wallis test). C. 

Sorted z-score TMB coloured by dataset (Kruskal-Wallis test). HdM-BLCA-1 (blue), IMvigor210 

(purple), MIAO-2018 (red), SNY-2017 (orange), UC-GENOME (light grey), UNC-108 (yellow). Source 

data of the boxplots are provided as a Source Data file. 

 



A.   

B.  

 

Sup. Figure 16. Quality control and normalization of tumor RNA-Seq samples. A. Uniquely mapped 

reads of all RNA-Seq samples, sorted descendingly and coloured by dataset. The horizontal line 

indicates the mean value. B. Batch effect of the five different datasets when conducting a PCA on the 

log2(TPM+1) matrices combining all RNA-Seq data. Normalizing the expression data using z score 

corrects for the batch effect. HdM-BLCA-1 (blue), IMvigor210 (purple), MIAO-2018 (red), SNY-2017 

(orange), UC-GENOME (light grey), UNC-108 (yellow). 



 

Sup. Figure 17. Model flow chart. The process of training and testing the model comprises multiple 

steps that start with data gathering followed by preprocessing steps and finally training and testing 

the model. A file containing all the results and a ROC plot are obtained. 





5.3 Supplementary Material for Results 3.3

Supplementary material for the manuscript titled ’Stop-loss mutations

in cancer’, presented in section 3.3.

Table S1: Number of samples, missense, and stop-loss mutations in TCGA cancer
types. The data corresponds to the TCGA MC3 project, sorted by the
proportion of stop-loss mutations.

Cancer Type Acronym Patients
Missense
Mutations

Stop-loss
Mutations

Proportion
of Stop-loss

Testicular Germ Cell Tumors TGCT 134 1710 9 0.52
Acute Myeloid Leukemia LAML 140 4137 18 0.43
Kidney Chromophobe KICH 66 1851 4 0.22
Uterine Carcinosarcoma UCS 57 6098 12 0.20
Pheochromocytoma and Paraganglioma PCPG 184 1600 3 0.19
Kidney Renal Papillary Cell Carcinoma KIRP 282 16655 31 0.19
Thyroid Carcinoma THCA 500 6656 12 0.18
Kidney Renal Clear Cell Carcinoma KIRC 370 16250 29 0.18
Thymoma THYM 123 2248 4 0.18
Bladder Urothelial Carcinoma BLCA 411 85142 150 0.18
Liver Hepatocellular Carcinoma LIHC 365 30935 49 0.16
Adrenocortical Carcinoma ACC 92 6496 10 0.15
Cervical Squamous Cell Carcinoma CESC 291 49790 74 0.15
Mesothelioma MESO 82 2060 3 0.15
Ovarian Serous Cystadenocarcinoma OV 411 29641 42 0.14
Esophageal Carcinoma ESCA 185 21846 30 0.14
Lung Squamous Cell Carcinoma LUSC 485 114119 153 0.13
Lung Adenocarcinoma LUAD 517 122329 164 0.13
Breast Invasive Carcinoma BRCA 1026 66867 89 0.13
Cholangiocarcinoma CHOL 36 1643 2 0.12
Diffuse Large B-cell Lymphoma DLBC 37 4171 5 0.12
Rectum Adenocarcinoma READ 150 38487 45 0.12
Head and Neck Squamous Cell Carcinoma HNSC 509 64476 74 0.11
Sarcoma SARC 239 15512 17 0.11
Stomach Adenocarcinoma STAD 439 116742 124 0.11
Glioblastoma Multiforme GBM 400 40323 38 0.09
Endometrial Carcinoma UCEC 531 459558 420 0.09
Colon Adenocarcinoma COAD 406 137248 113 0.08
Brain Lower Grade Glioma LGG 525 24779 18 0.07
Prostate Adenocarcinoma PRAD 498 18539 13 0.07
Skin Cutaneous Melanoma SKCM 468 296949 164 0.06
Pancreatic Adenocarcinoma PAAD 178 18364 10 0.05
Uveal Melanoma UVM 80 1186 0 0.00
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Table S2: Number of clonal and subclonal mutations. 58.94% of the stop-loss
mutations and 62.48% of the missense mutations were clonal (chi-
square p-value=0.7). We only considered missense mutations from TCGA
patients with stop-loss mutations.

Clonal Subclonal Total

Missense mutations 1,147,171 688,885 1,836,056
Stop-loss mutations 1,141 795 1,936
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Table S3: Number of missense and stop-loss mutations in different groups of
genes. Significance is marked with * accounting for multiple testing using
the Bonferroni methods (alpha=0.01)

Missense
(N = 1,826,158)

Stop-loss
(N = 2,066)

X² p-value

Cancer gene list (N = 77) 13,293 (0.73%) 26 (1.26%) 0.0045 *
COSMIC oncogenes (N = 319) 25,018 (1.36%) 44 (2.12%) 0.00297 *
COSMIC tumor suppressor
genes N=320

29,628 (1.60%) 40 (1.93%) 0.25
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Table S4: Gene lists of cancer-related genes. The mutations in these genes are
indicated in Table S3.

Cancer-related genes (n = 77)

DNA-damage repair

ATM, ATRX, BLM, BRCA1, BRCA2, BRIP1, CHEK2, DDB2,
ERCC2, ERCC3, ERCC4, ERCC5, FANCA, FANCD2, FANCE,
FANCF, FANCG, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2,
PMS1, PMS2, PRKDC, WRN, XPA, FANCC, XPC

Chromatin-modifying
ARID1A, ARID2, ASXL1, ATRX, AURKB, BRCA1, BRCA2,
CHEK2, CREBBP, EP300, KDM6A, MECOM, NPM1, RAD21,
SMC3, STAG2

Chromatin-regulating
KDM6A, KMT2A, KMT2B, KMT2C, KMT2D, EP300, CREBBP,
ARID1A, CDH6, ASXL1, ASXL2, KANSL1

HLA

HLA-F, HLA-G, HLA-A, HLA-E, HLA-C, HLA-B, HLA-DRA,
HLA-DRB5, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DQA2,
HLA-DQB2, HLA-DOB, HLA-DMB, HLA-DMA, HLA-DOA,
HLA-DPA1, HLA-DPB1

COSMIC gene lists

Oncogenes
(n = 319)

TNFRSF17, CYSLTR2, BCL2L12, ARHGAP5, ZNF521, TRIM27,
TRIM24, TMSB4X, STAT5B, SH3GL1, SETDB1, PDGFRB,
PABPC1, NKX2-1, NFATC2, MALAT1, KNSTRN, HOXD13,
HOXD11, HOXC13, HOXC11, HOXA13, CTNND2, CTNNA2,
CHST11, CDKN1A, WWTR1, U2AF1, TRRAP, TAF15, STAT6,
STAT3, SRSF3, SRSF2, RUNX1, RSPO3, PLAG1, PDGFB,
P2RY8, OLIG2, NUTM1, NUP98, NTRK2, NR4A3, NFKB2,
MUC16, MTCP1, MRTFA, MECOM, MAML2, MALT1, MACC1,
KDM5A, KCNJ5, KAT6A, IKZF3, HOXA9, HMGA2, HMGA1,
FSTL3, FOXR1, FOXP1, FOXO4, FOXO3, FOXO1, FCRL4,
DGCR8, CSF1R, CREB1, CDH17, CCND3, BIRC6, ZEB1, USP6,
TSHR, TLX3, TLX1, TFEB, TCF3, TBX3, TAL2, TAL1, STIL,
SSX4, SSX2, SSX1, SOX2, SND1, SIX2, SGK1, RARA, POLQ,
NSD3, NSD2, MYCN, MYCL, MUC4, MSI2, MITF, MDM4,
MDM2, MAFB, LYL1, LMO2, LMO1, KAT7, IRF4, GRM3, GLI1,
FLI1, ETV5, ETV4, ETV1, CD74, CD28, CCR7, CCR4, CBLC,
BRD3, BCL6, BCL3, BCL2, ARAF, AKT3, AKT2, AFDN, ABL2,
A1CF, WT1, TNC, TEC, SYK, SRC, SKI, SET, REL, MYB, MN1,
MAF, LYN, LPP, JUN, HLF, FEV, DEK, AR, ALK, BTK, CBL, CIC,
ERG, FES, KDR, KIT, LCK, MET, MPL, MYC, QKI, RET, SMO,
WAS, ABL1, AFF3, AFF4, AKT1, ARNT, ATF1, BCL9, BRAF, BRD4,
CALR, CDK4, CDK6, CHD4, CUX1, DAXX, DDB2, DDR2, DDX5,
DDX6, EGFR, ELF4, ELK4, ESR1, EZH2, FLT3, FLT4, GNAQ,
GNAS, GPC3, HEY1, HIP1, HRAS, IDH1, IDH2, IL7R, IRS4, JAK1,
JAK2, JAK3, KLF4, KRAS, LEF1, MTOR, NPM1, NRAS, PAX3,
PAX5, PBX1, PIM1, PTK6, RAC1, RAF1, RHOA, ROS1, SIX1,
TERT, TET1, TFE3, TP53, TP63, UBR5, USP8, XPO1, ACKR3,
ACVR1, BCL9L, BIRC3, CCND1, CCND2, CCNE1, CD79A, CD79B,
CRLF2, CRTC1, CSF3R, CXCR4, DDIT3, EPAS1, ERBB2, ERBB3,
ERBB4, EWSR1, FGFR1, FGFR2, FGFR3, FGFR4, FOXA1, FOXL2,
FUBP1, GATA1, GATA2, GATA3, GNA11, H3F3A, H3F3B, HIF1A,
IKBKB, IL6ST, KDM6A, KMT2A, KMT2D, MAPK1, MYD88,
MYOD1, NCOA2, NT5C2, NTRK1, NTRK3, PLCG1, PPM1D,
PREX2, PSIP1, RAD21, SALL4, SF3B1, SUZ12, TCL1A, ATP1A1,
BCL11A, BCL11B, BCORL1, BMPR1A, CARD11, CREBBP,
CTNNB1, FCGR2B, HOXA11, MAP2K1, MAP2K2, MAP2K4,
MAP3K1, MLLT10, NFE2L2, NOTCH1, NOTCH2, PDGFRA,
PIK3CA, PIK3CB, POU5F1, PRDM16, PRKACA, PTPN11, RECQL4,
SETBP1, TCF7L2, CACNA1D, CREB3L2, MAP3K13, POU2AF1,
PRKAR1A, RUNX1T1, TBL1XR1, APOBEC3B, HIST1H3B,
PDCD1LG2, RAP1GDS1, HNRNPA2B1
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COSMIC gene lists

Tumor-suppressor genes
(n = 320)

FH, ARHGEF10L, TNFRSF14, LEPROTL1, ARHGEF12, ARHGEF10,
ARHGAP35, TMEM127, SMARCE1, SMARCD1, IGF2BP2, CNTNAP2,
ZNF331, TRIM33, TRIM24, TENT5C, STAT5B, SETD1B, SDHAF2,
RAD51B, PABPC1, NKX2-1, MALAT1, LARP4B, CTNNA1, CDKN1A,
ACVR1B, ZNRF3, ZMYM3, YWHAE, USP44, STK11, STAG1, SOX21,
SMC1A, SIRPA, SFRP4, RUNX1, RSPO2, RPL22, RPL10, ROBO2,
RFWD3, RAD17, PTPRK, PTPRD, PTPRC, PTPN6, PRDM2, PATZ1,
PALB2, NTHL1, NFKB2, NCOA4, N4BP2, MUTYH, MRTFA, LRIG3,
KAT6B, IKZF3, HOXA9, FOXO4, FOXO3, FOXO1, FBLN2, FANCG,
FANCF, FANCE, FANCC, FANCA, CSMD3, CPEB3, CDH10, CD274,
CASP9, CASP3, BAZ1A, ASXL2, WNK2, TSC2, TSC1, TPM3, TCF3,
TBX3, SUFU, SDHD, SDHC, SDHB, SBDS, RMI2, PRF1, POLQ,
POLG, NRG1, MYH9, MLF1, MGMT, KLF6, IRF4, GPC5, FLCN,
FEN1, EXT2, EXT1, ELF3, CUL3, CHD2, CDX2, CCNC, CBLC,
BTG2, BTG1, XPC, XPA, WT1, WRN, PML, NBN, ID3, EED, BAX,
APC, ATM, ATR, B2M, BLM, BTK, CBL, CIC, ELL, FAS, FES, FUS,
MAX, NF1, NF2, QKI, RB1, VHL, ABI1, ARNT, ATRX, BAP1, BCOR,
CARS, CBFB, CBLB, CDH1, CLTC, CNBP, CTCF, CUX1, CYLD,
DAXX, DDB2, DNM2, EBF1, ELF4, ESR1, ETV6, EZH2, FAT1, FAT4,
FHIT, GPC3, IRS4, JAK1, KLF4, KNL1, LEF1, MEN1, MLH1, MSH2,
MSH6, NAB2, PAX5, PER1, PHF6, PMS2, POLE, POT1, PTEN,
PTK6, RHOA, RHOH, RPL5, SDHA, SFPQ, SPEN, SPOP, TERT,
TET1, TET2, TP53, TP63, WIF1, AMER1, ARID2, ASXL1, AXIN1,
AXIN2, BARD1, BCL10, BCL9L, BIRC3, BRCA1, BRCA2, BRIP1,
BUB1B, CASP8, CCDC6, CDC73, CDH11, CDK12, CEBPA, CHEK2,
CIITA, CNOT3, DDX10, DDX3X, EIF3E, EP300, EPAS1, EPS15,
ERBB4, ERCC2, ERCC3, ERCC4, ERCC5, ETNK1, FBXW7, FOXL2,
GATA1, GATA3, HNF1A, IKZF1, KDM5C, KDM6A, KEAP1, KMT2C,
KMT2D,LATS1, LATS2, LRP1B, LZTR1, MED12, NCOR1, NCOR2,
NDRG1, NTRK1, PBRM1, POLD1, PPARG, PPP6C, PRDM1, PTCH1,
PTPRB, PTPRT, RAD21, RBM10, RNF43, SETD2, SH2B3, SMAD2,
SMAD3, SMAD4, SOCS1, STAG2, SUZ12, TRAF7, ZFHX3, ZRSR2,
ACVR2A, ARID1A, ARID1B, ATP1A1, ATP2B3, BCL11B, BCORL1,
BMPR1A, CAMTA1, CDKN1B, CDKN2A, CDKN2C, CLTCL1,
CREBBP, DICER1, DNMT3A, DROSHA, FANCD2, FBXO11, GRIN2A,
HOXA11, MAP2K4, MAP3K1, NFE2L2, NFKBIE, NOTCH1, NOTCH2,
PHOX2B, PIK3R1, PTPN13, RANBP2, RECQL4, TGFBR2, ZBTB16,
CBFA2T3, CREB3L1, MAP3K13, PPP2R1A, PRKAR1A, RUNX1T1,
SLC34A2,SMARCA4, SMARCB1, TBL1XR1, TNFAIP3, APOBEC3B,
ARHGAP26, CCNB1IP1
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Table S5: Statistics of Hydrophobicity and isoelectric point distribution in stop-
loss extensions, canonical sequences, and intronic ORFs. P-values are
obtained from the Wilcoxon test comparing stop-loss extensions to the
other two groups.

Length Min Q1 Median Mean Q3 Max
Stop-loss extension 1.00 8.00 17.00 26.45 36.00 221.00

Hydrophobicity Min Q1 Median Mean Q3 Max p-value
Stop-loss extension -4.50 -0.83 -0.16 -0.18 0.40 4.50
Canonical -3.43 -0.59 -0.35 -0.33 -0.09 2.11 2.2e-16
iORF -4.50 -0.47 0.07 0.09 0.64 4.50 9.4e-16

Isoelectric point Min Q1 Median Mean Q3 Max p-value
Stop-loss extension 3.33 6.10 7.93 7.97 10.04 13.10
Canonical 3.13 6.10 7.34 7.42 8.76 13.80 2.2e-16
iORF 2.18 6.20 8.52 8.16 10.13 14.00 0.006
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Figure S1: Possible nucleotide substitutions in the stop codons and the result-
ing codons. The majority of stop codon mutations extend the coding
sequence. Mutated codons with the encoded amino acid and its chemical
properties. Variants that encode another stop codon (*) or the same
amino acid as a previous mutation in the list are marked in light grey. For
each stop codon, 30% of the mutations result in a polar amino acid.

171



0

2

4

6

8
M

us
cl

e

H
ea

rt

W
ho

le
 B

lo
od

Te
st

is

A
dr

en
al

P
itu

ita
ry

P
an

cr
ea

s

S
al

iv
ar

y 
G

la
nd

S
to

m
ac

h

P
ro

st
at

e

K
id

ne
y

Li
ve

r

S
pl

ee
n

B
ra

in

B
la

dd
er

E
so

ph
ag

us

C
ol

on

S
m

al
l

B
re

as
t

Lu
ng

A
di

po
se

N
er

ve

V
ag

in
a

T
hy

ro
id

C
ul

tu
re

dF
ib

ro
bl

as
ts

Fa
llo

pi
an

O
va

ry

S
ki

n

U
te

ru
s

C
er

vi
x

A
rt

er
y

E
B

V.
tr

an
sf

or
m

ed
Ly

m
ph

oc
yt

es

Healthy tissue

M
ed

ia
n 

lo
gT

P
M

tissue other testis

PTMA expression in healthy tissues GTEx

Figure S2: Expression of the PTMA gene in different body tissues. The median
logTPM value in GTEX is shown.
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Figure S3: Expression of PTMA in tumors with the stop-loss mutation and tumors
without this mutation. Patients with a stop-loss mutation in PTMA are
marked red. The expression in mutated samples is not significantly
different from the distribution of expression values (two-sided t-test p-
value=0.19).
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ANNEX

5.4 Academic Engagement

• Research Stay at Vall d’Hebron Institute of Oncology (VHIO),

Barcelona, July 2024.

• Committee Member of the International Society of Computa-

tional Biology (iSCB) Student Council, 2024

5.5 Science Divulgation Talks

• European Researcher’s Night 2021, Barcelona, 24th of September

2021.

• Dia Internacional de la Dona i la Nena a la Ciència 2021, Orlot,

7th of February 2022.

• OpenPRBB Day 2023, Barcelona, 7th of October 2023.

• Dia Internacional de la Dona i la Nena a la Ciència 2024, Mataró,

6th of February 2024.

• "Research in 4 minutes" (Rin4min) finals by Universidad Pompeu

Fabra, Barcelona, tth of June 20241.

• European Researcher’s Night 2024, Barcelona, 27th of September

2024.

1On YouTube "Final Rin4min 2024" by Pompeu Fabra University - Barcelona
(https://www.youtube.com/watch?v=X-brz0mZ5mY&t=590s)
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5.6 Oral Presentations

• PRBB Computational Genomics Seminar, Barcelona, 4th of April

2024.

• PRBB Computational Genomics Symposium, Sant Feliu de Guíxols

Spain, 28th of April 2025.

• European Association for Cancer Research (EARC) Conference,

Barcelona, 13th of May 2025.

5.7 Poster Presentations

• ACGT Computational Genomics workshops by CRG and IMIM,

Sant Feliu de Guíxols Spain, 13th of April 2023.

• Immunity and Cancer Immunotherapy by Institute Curie, Mar-

seille, 21th of June 2023.

• EMBL Cancer Genomics Conference, Heidelberg, 16th of Novem-

ber 2023. Shown on the following page.

• VHIO Computational Oncology Master Thesis Award, Barcelona,

21st of February 2024.
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Neoantigens

Missense mutations

Nonstop mutations

Frameshift mutations

Inframe mutations

Neoantigens from nonstop mutations

Neoantigens from frameshift mutations

Clonal TMB

Subclonal TMB

APOBEC-induced subclonal mutations

APOBEC-induced clonal mutations

APOBEC-induced total mutations

Tumor mutational load (TMB) is the most
relevant biomarker currently studied for clinical use.

NR - non-responders
R - respondersICI response

Mutational signatures such as
the APOBEC signature
(TCW) significantly separates
the two response groups.

suggested to improve accuracy of response
prediction. However, we report a high correlation to
TMB.

Mutation clonality, mutation
signatures and neoantigen load
and quality have been

NR - non-responders
R - responders

ICI response
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Described biomarkers for ICI response
in bladder cancer

Mutations

ImmuneDemographic

Immune
activation

suppressionLiver
metastasis3
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EMT
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Immune checkpoint
inhibitors (ICI)

Drugs blocking immune checkpoints that
tumor cells use to inactivate immune cells

Tumor cell

T cell

T cell receptor

Peptide

HLA

PD-L1

PD-1

What are we doing?

Building a predictive ML model using multi-omics data
from six cohorts of advanced bladder cancer patients
who underwent anti-PD-L1/PD-1 therapy.

Why is this important?

Known biomarkers are insufficient in separating
responding from non-responding patients. Better
predictors are needed to allow for a more personalized
treatment of metastatic bladder cancer.

What makes our model stand out?

We will train our predictive model on the biggest
bladder cancer specific cohort. Previous pan-cancer
studies have failed to build predictive models that were
robust enough in independent cohorts.

Immune checkpoint inhibitors (ICI) have shown
remarkable potential in inducing long-term complete
remissions in advanced bladder cancer patients.

However, their effectiveness varies widely among individuals,
with less than 20% of patients responding to the treatment.
This emphasizes the urgent need to understand the underlying
factors to better predict clinical response ICI therapy.

Unveiling biomarkers to improve response
prediction to immune checkpoint inhibitors in
advanced bladder cancer
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