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OUR APPROACHINTRODUCTION

1. Tumor mutational burden (TMB) is the most
strongest predictor for ICI response in BLCA.
Pro-inflammatory markers are non-additive to TMB.

2. We discovered novel biomarker associated to ICI
response: stop-loss mutations, a long non-coding RNA
signature and the inactivation of ARHGEGEF12.

3. We build robust prediction models for ICI response,
incorporating multi-omics data from six cohorts, reaching high
accuracy, especially in the immune-infiltrated subtypes.

4. High immune-infiltrated subtypes do not respond better.
This paradox is likely attributed to lower TMB and immune
suppressive mechanisms in these patients.

5. In the non-immune-infiltrated group, we identified
subtype-specific markers affecting response to ICI.
The neuronal subtype, though rare, shows
strongest response to immunotherapy.

In subtype-specific analyses, we found
other markers associated to ICI
response in non-immune-infiltrated
subtypes (PD-L1, antigen presentation
machinery, regulatory T cells, ...).

Models by immune-infiltration group

Maximum accuracy was achieved for
the immune-infiltrated subgroup while
the non-immune-infiltrated model
showed low accuracy (AUC=0.793 vs
0.649).

* ROC curves are averages of 1000 runs
using all variables (complete model).

Models by infiltration types

Immune-infiltrated tumors:
N=137,AUC=0.793
Non-immune-infiltrated tumors:
N=68,AUC=0.649

0 0.2 0.4 0.6 0.8 1
1 -Specificity (FPR)

0

0.2

0.4

0.6

0.8

1

Se
ns

itiv
ity

(T
PR

)

Validating TMB + RNA model
in JAVELIN Bladder 100 trial

TMB &RNA validation:
N=123, AUC=0.764
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The model achieved an AUC of 0.764 in the
validation run using an independent BLCA cohort.
Furthermore, removing one dataset at a time resulted
in models with similar accuracies.
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Complete data train/test

* Complete model: all feautures shown in barplot;
TMB&RNA: TMB and RNA-derived feautures. ROC
curves are averages of 1000 runs.

CompleteModel: *
N = 205, AUC = 0.761
TMB&RNA: *
N = 348, AUC = 0.747
Baseline z-score TMB:
N = 378, AUC = 0.678 CCND1
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Feature importances

Random Forest Models predicting ICI response

Our complete model performs better than the TMB-only
(AUC=0.761 vs 0.678). Variables with a clear association
with response were TMB, M1 macrophages, APOBEC-
enrichment, IFN-γ, CD8+ T cells, PD1 and HLA-I.
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Relationship between CD8 T cell and TGF-β gene expression.
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Molecular subtypes

better treatment response (p value = 0.014). Based on their immune cell infiltration,
we analyzed the immune-infiltrated (luminal-infiltrated and basal-squamous) and non-
immune-infiltrated (luminal-papillary, luminal and neuronal) subtypes separately.
Immune-infiltrated samples tend to have high CD8+ T cell abundance, and in many
cases also high levels of the TGF-β signature.

Among the five molecular BLCA subtypes, only neuronal shows a significantly

The determinants of response depend on the molecular subtype

p = 0.0084

0.0

2.5

5.0

z-
sc

or
e

TM
B

Tumor Mutational Burden
p = 1.2e−09

p = 0.00026

0.0

2.5

5.0

z-
sc

or
e

TM
B

infiltrated not
infiltratedinfiltrated not

infiltrated

p = 0.00069 p = 0.00465

0

2

4

6

8

PD-1 PD-L1

z-
sc

or
e

(lo
g2

TP
M

)

Immune checkpoint expression

p = 0.017

−0.4

0.0

0.4

G
SV

A-
sc

or
e

Tumor-specific
lncRNA signature

p = 0.0025

−1.0

−0.5

0.0

0.5

1.0

HLA−I

G
SV

A-
sc

or
e

Antigen
presentation

Antigen presentation and Immune checkpoint expression

Responders further have high levels of the immune checkpoint
molecules PD-1 and PD-L1 as well as the antigen presenting molecules
of the HLA-I group. We further found responders to have a higher
expression of tumor-specific long non-coding RNA (lncRNA).
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Deconvolution

Immune activation markers associated with response

Responders show an enrichment of pro-inflammatory markers
and have higher infiltration of immune cells such as T cells or
M1 macrophages, while non-responders show higher values of
markers for immune suppression such as TGF-β.
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Missense and stop-loss mutations are significantly
associated with the response to ICI. Responders are
further enriched in APOBEC-induced mutations
and mutations in the gene ARHGEF12.
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Described biomarkers for ICI response in BLCA
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What did we do?
We integrated multi-omics data from six independent cohorts (N=707) of
advanced bladder cancer patients treated with anti-PD-1/PD-L1 to
develop and validate machine learning models for predicting
immunotherapy response.
Why is this important?

Known biomarkers are insufficient in separating responding from non-
responding patients. Better predictors are needed to allow for a more
personalized treatment of metastatic bladder cancer.
What makes our work stand out?
We built the biggest bladder cancer specific cohort. Previous pan-
cancer studies have failed to build predictive models that were robust
enough in independent cohorts.

Immune checkpoint inhibitors (ICI) have shown remarkable potential in
inducing long-term complete remissions in advanced bladder cancer patients.

However, their effectiveness varies widely among individuals, with less than
20% of bladder cancer (BLCA) patients responding to the treatment. This
emphasizes the urgent need to understand the underlying factors to better
predict clinical response ICI therapy.
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Predicting immunotherapy response
of advanced bladder cancer
a meta-analysis of six independent cohorts
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